REMOTE CONTROL MANUAL

MODELS 9420/24/50
DUAL- AND QUAD-CHANNEL
DIGITAL OSCILLOSCOPES

Serial Number 2 // 3 5

February 1990

LeCroy

Corporate Headquarters

700 Chestnut Ridge Road

Chestnut Ridge, NY 1097764899

Tel: (914) 425-2000, TWX: 710-577-2832

European Headquarters

2, chemin Pré-de-la-Fontaine

P.O. Box 34t

1217 Meyrin 1/Geneva, Switzerland
Tel.: (022) 719 21 11, Telex: 419 058

Copyright® February 1990, LeCroy. All rights reserved. Information in this
publication supersedes all earlier versions. Specifications subject to change.

TABLE OF CONTENTS

1 General Information

Initial Inspection
Warranty

Product Assistance
Maintenance Agreements
Document Discrepancies
Service Procedure
Return Procedure

2 About Remote Control

GPIB Implementation Standard
Program Messages

Commands and Queries

Local and Remote State
Program Message Form
Command/Query Form
Response Message Form

3 GPIB Operation

GPIB Structure

Interface Capabilities

Addressing

GPIB Signals

IEEE 4888.1 Standard Messages
Programming GPIB Transfers
Programming Service Requests
Instrument Polls

Driving a Hard-copy Device

4 RS-232-C Operation

Introduction

RS-232-C Pin Assignments

RS-232-C Configuration

Commands Simulating GPIB Commands

DR N e e e

O N K bW W

11
11
12
12
13
15
19
21
25

29
29
30
33

Table of Contents

5 System Commands

Organization
Command Summary
Command Execution
Command Notation

6 Waveform Structure

Introduction

Logical Data Blocks of a Waveform
Inspect? Command

Waveform? Command

Waveform Command

More Control of Waveform Queries
High-speed Waveform Transfer

7 Status Registers

Overview of Status and Service Request Reporting
Status Byte Register (STB)

Standard Event Status Register (ESR)

Standard Event Status Enable Register (ESE)
Service Request Enable Register (SRE)

Parallel Poll Enable Register (PRE)

Internal State Change Status Register (INR)
Internal State Change Enable Register (INE)
Command Error Status Register (CMR)

Device Dependent Error Status Register (DDR)
Execution Error Status Register (EXR)

User Request Status Register (URR)

35
35
37
37

159
159
160
162
167
168
168

171
173
174
175
175
175
175
176
176
176
176
176

Table of Contents

Appendix A

Example 1: Use of the Interactive
GPIB Program 'IBIC’

Example 2: GPIB Program for IBM PC
(High-level Function Calls)

Example 3: GPIB Program for IBM PC
(Low-level Function Calls)

Appendix B

The Waveform Template

179

180

182

185

1

GENERAL INFORMATION

INITIAL INSPECTION

WARRANTY

PRODUCT ASSISTANCE

MAINTENANCE
AGREEMENTS

It is recommended that the shipment be thoroughly inspected im-
mediately upon delivery to the purchaser. All material in the
container should be checked against the enclosed Packing List.
LeCroy cannot accept responsibility for shortages in comparison
with the Packing List unless notified promptly. If the shipment is
damaged in any way, please contact the Customer Service Depart-
ment or local field office immediately.

LeCroy warrants its oscilloscope products to operate within specifi-
cations under normal use for a period of two years from the date of
shipment. Spares, replacement parts and repairs are warranted for
90 days. The instrument’s firmware is thoroughly tested and
thought to be functional, but is supplied “as is” with no warranty of
any kind covering detailed performance. Products not manufac-
tured by LeCroy are covered solely by the warranty of the original
equipment manufacturer.

In exercising this warranty, LeCroy will repair or, at its option,
replace any product returned to the Customer Service Department
or an authorized service facility within the warranty period, pro-
vided that the warrantor’s examination discloses that the product
is defective due to workmanship or materials and that the defect
has not been caused by misuse, neglect, accident or abnormal con-
ditions or operation.

The purchaser is responsible for the transportation and insurance
charges arising from the return of products to the servicing facility.
LeCroy will return all in-warranty products with transportation
prepaid.

This warranty is in lieu of all other warranties, expressed or im-
plied, including but not limited to any implied warranty of
merchantability, fitness, or adequacy for any particular purpose or
use. LeCroy shall not be liable for any special, incidental, or con-
sequential damages, whether in contract or otherwise.

Answers to questions concerning installation, calibration, and use
of LeCroy equipment are available from the Customer Service De-
partment, 700 Chestnut Ridge Road, Chestnut Ridge, New York
10977-6499, U.S.A., tel. (914)578-6059, and 2, chemin Pré-
de-la-Fontaine, 1217 Meyrin 1, Geneva, Switzerland, tel.
(41)22/719 21 11, or your local field engineering office.

LeCroy offers a selection of customer support services. For exam-
ple, maintenance agreements provide extended warranty and
allow the customer to budget maintenance costs after the initial
two year warranty has expired. Other services requested by the
customer such as installation, training, on-site repair, and addi-

1 General Information

DOCUMENTATION
DISCREPANCIES

SERVICE PROCEDURE

RETURN PROCEDURE

tion of engineering improvements are made available through
specific Supplemental Support Agreements.

LeCroy is committed to providing state-of-the-art instrumenta-
tion and is continually refining and improving the performance of
its products. While physical modifications can be implemented
quite rapidly, the corrected documentation frequently requires
more time to produce. Consequently, this manual may not agree in
every detail with the accompanying product. There may be small
discrepancies in the values of components for the purposes of
pulse shape, timing, offset, etc., and, occasionally, minor logic
changes. Where any such inconsistencies exist, please be assured
that the unit is correct and incorporates the most up-to-date cir-
cuitry. In a similar way the firmware may undergo revision when
the instrument is serviced. Should this be the case, manual up-
dates will be made available as necessary.

Products requiring maintenance should be returned to the Cus-
tomer Service Department or authorized service facility. LeCroy
will repair or replace any product under warranty at no charge.
The purchaser is only responsible for the transportation charges
arising from return of the goods to the service facility.

For all LeCroy products in need of repair after the warranty pe-
riod, the customer must provide a Purchase Order Number before
any equipment which does not operate correctly can be repaired
or replaced. The customer will be billed for the parts and labor for
the repair, as well as for shipping.

To determine your nearest authorized service facility, contact the
Customer Service Department or your field office. All products
returned for repair should be identified by the model and serial
numbers and include a description of the defect or failure, name
and phone number of the user, and, in the case of products re-
turned to the factory, a Return Authorization Number (RAN).
The RAN may be obtained by contacting the Customer Service
Department in New York, tel. (914)578-6097, in Geneva, tel.
(41)22/719 21 11, or your nearest sales office.

Return shipments should be made prepaid. LeCroy will not accept
C.0.D. or Collect Return Shipments. Air-freight is generally rec-
ommended. Wherever possible, the original shipping carton
should be used. If a substitute carton is used, it should be rigid and
be packed such that the product is surrounded with a minimum of
four inches of excelsior or similar shock-absorbing material. In
addressing the shipment, it is important that the Return Authoriza-
tion Number be displayed on the outside of the container to ensure
its prompt routing to the proper department within LeCroy.

ABOUT REMOTE CONTROL

GPIB IMPLEMENTATION
STANDARD

PROGRAM MESSAGES

Two modes of operation are available in the oscilloscope. The in-
strument may be operated either manually, by using the
front-panel controls, or remotely by means of an external control-
ler (which is usually a computer, but may be a simple terminal).
This Remote Control Manual describes how to control the oscillo-
scope in the remote mode. For explanations on how to manually
set front-panel controls, refer to the Operator’s Manual.

The oscilloscope is remotely controlled via either the GPIB (Gen-
eral Purpose Interface Bus) or the RS-232-C communication
ports. Whenever the rear—panel GPIB address switches are set be-
tween 0 and 30, control is via GPIB; when they are at 31 or above,
control is via RS-232-C. The instrument can be fully controlled in
remote mode. The only actions which cannot be performed re-
motely are switching on the instrument or setting the remote
address.

This section introduces the basic remote control concepts which
are common to both RS-232-C and GPIB. It also presents a brief
description of remote control messages.

Sections 3 and 4 explain how to send program messages over the
GPIB or the RS-232-C interfaces, respectively. Section 5 alpha-
betically lists all the remote control commands. Section 6 is a
detailed description and tutorial of the transfer and format of
waveforms, whereas Section 7 explains the use of status bytes for
error reporting. Appendix A shows some complete programming
examples. Appendix B contains a printout of a waveform tem-
plate.

The remote commands conform to the GPIB IEEE 488.2 stan-
dard!. This new standard may be seen as an extension of the
IEEE 488.1 standard which dealt mainly with electrical and me-
chanical issues. The IEEE 488.2 recommendations have also
been adopted for RS-232-C communications whenever applica-
ble.

To remotely control the oscilloscope the controller must send pro-
gram messages which conform to precise format structures. The
instrument will execute all program messages which are in the cor-
rect form and ignore those where errors are detected.

1. ANSI/IEEE Std. 488.2~1987, “IEEE Standard Codes, Formats, Protocols, and Common Commands”, The
Institute of Electrical and Electronics Engineers Inc., 345 East 47th Street, New York, NY 10017, USA.

2 About Remote Control

COMMANDS
AND QUERIES

Warning or error messages are normally not reported by the instru-
ment, unless the controller explicitly examines the relevant status
register, or if the status enable registers have been set in such a way
that the controller can be interrupted when an error occurs. The
status registers are explained in Section 7.

During the development of the control program it is possible to
observe all remote control transactions, including error messages,
on an external monitor connected to the RS-232-C port. Refer to
the command “COMM_HELP” for further details.

Program messages consist of one or several commands or queries.
A command directs the instrument to change its state, e.g. to
change its time base or vertical sensitivity. A query asks the instru-
ment about its state. Very often, the same mnemonic is used for a
command and a query, the query being identified by a <?> after
the last character.

For example, to change the time base to 2 msec/div, the controller
should send the following command to the instrument

TIME_DIV 2 MS

To ask the instrument about its time base, this query should be
sent

TIME_DIV?

A query causes the instrument to send a response message. The
control program should read this message with a “read” instruc-
tion to the GPIB or RS-232-C interface of the controller. The
response message to the query above might be

TIME_DIV 10 NS

The portion of the query preceding the question mark is repeated
as part of the response message. If desired, this text may be sup-
pressed with the command “COMM_HEADER”.

Depending on the state of the instrument and the computation to
be done, the controller may have to wait up to several seconds for
a response. Command interpretation does not have priority over
other oscilloscope activities. It is therefore judicious to set the con-
troller IO timeout conditions to 3 or more seconds. In addition, it
must be remembered that an incorrect query message will not gen-
erate a response message.

About Remote Control 2

LOCAL AND REMOTE
STATE

PROGRAM MESSAGE
FORM

As a rule, remote commands are only executed by the instrument
when it is in the REMOTE state, whereas queries are always ex-
ecuted. A few commands which don’t affect the state of the front
panel are also executed in LOCAL (refer to the beginning of Sec-
tion § for a list of these commands). When the instrument is in
REMOTE, all front-panel controls are disabled, except the left—
hand menu buttons, the intensity controls (which can be disabled
with the command “INTENSITY”) and the LOCAL button
(which can be disabled by setting the instrument to LOCAL
LOCKOUT). For an explanation on how to set the instrument to
LOCAL, REMOTE or LOCAL LOCKOUT, refer to Section 3 for
GPIB and to Section 4 for RS-232-C.

An instrument is remotely controlled with program messages
which consist of one or several commands or queries, separated by
semicolons <;> and ended by a terminator:

<command/query>;......... ;<command/query> <terminator>

Upper and/or lower case characters can be used for program mes-
sages.

The instrument does not decode an incoming program message
before a terminator has been received (exception: if the program
message is longer than the 256 byte input buffer of the instrument,
the oscilloscope starts analyzing the message when the buffer is
full). The commands or queries are executed in the order in which
they are transmitted.

In GPIB mode, the following are valid terminators:

<NL> New-line character (i.e. the ASCII new-line
character, whose decimal value is 10).

<NL> <EOI> New-line character with a simultaneous <EOI>
signal.

<EOI> <EOQOI> signal together with the last character of
the program message.

Note: The <EOI> signal is a dedicated GPIB interface line which
can be set with a special call to the GPIB interface driver. Refer to
the GPIB interface manufacturer’s manual and support pro-
grams.

The <NL> <EOQOI> terminator is always used in response messages
sent by the instrument to the controller.

In RS-232-C, the terminator may be defined by the user with the
command “COMM_RS232”. The default value is <CR>, i.e. the
ASCII carriage return character, the decimal value of which is 13.

2 About Remote Control

Examples

COMMAND/QUERY
FORM

Example

Header

GRID DUAL This program message consists of a
single command which instructs the
instrument to display a dual grid.
The terminator is not shown since it
is usually automatically added by
the interface driver routine which
writes to the GPIB (or RS-232).

BWL ON; DISPLAY OFF; DATE?

This program message consists of
two commands, followed by a
query. They instruct the instrument
to turn on the bandwidth limit, turn
off the display, and then ask for the
current date. Again, the terminator
is not shown.

The general form of a command or a query consists of a command
header <header> which is optionally followed by one or several
parameters <data> separated by commas:

<header>[?] <data>,...,<data>

The notation [?] shows that the question mark is optional (turning
the command into a query). The detailed listing of all commands
in Section 5 indicates which commands may also be queries.
There is a space between the header and the first parameter.
There are commas between parameters.

DATE 15,0CT,1989,13,21,16
This command instructs the oscillo-
scope to set its date and time to 15
OCT 1989, 13:21:16. The com-
mand header “DATE” indicates
the action, the 6 data values specify
it in detail.

The header is the mnemonic form of the operation to be per-
formed by the oscilloscope. All command mnemonics are listed in
alphabetic order in Section S.

The majority of the command/query headers have a long form for
optimum legibility and a short form for better transfer and decod-
ing speed. The two forms are fully equivalent and can be used
interchangeably. For example, the following two commands for
switching to the automatic trigger mode are fully equivalent:

TRIG_MODE AUTO and TRMD AUTO

About Remote Control 2

Header path

Example

Data

Some command/query mnemonics are imposed by the IEEE
488.2 standard. They are standardized so that different instru-
ments present the same programming interface for similar
functions. All these mnemonics begin with an asterisk <*>, e.g.
the command “*RST” is the IEEE 488.2 imposed mnemonic for
resetting the instrument, whereas “*TST?” instructs the instru-
ment to perform an internal self-test and to report the outcome.

Some commands or queries apply to a sub-section of the oscillo-
scope, e.g. a single input channel or a trace on the display. In such
cases, the header must be preceded by a path name that indicates
the channel or trace to which the command applies. The header
path normally consists of a 2-letter path name followed by a colon
<:> which immediately precedes the command header.

Usually one of the waveform traces can be specified in the header
path (refer to the individual commands listed in Section 5 for de-
tails on which values apply to a given command header):

C1, C2 Channels 1 and 2

C3, C4 Channels 3 and 4 (in 4-channel instruments)
MC, MD Memory C and D

FE, FF Function E and F

EA, EB Expand A and B

EX, EX10 External trigger

C1:0FST -300 MV Set the offset of Channel 1 to
-300 mV

Header paths need only be specified once. Subsequent commands
whose header destination is not indicated are assumed to refer to
the last defined path. For example, the following commands are
identical:

C2:VDIV?; C2:0OFST? What is the vertical sensitivity and
the offset of channel 2?

C2:VDIV?; OFST? Same as above, without repeating
the path.

Whenever a command/query uses additional data values, they are
expressed in terms of ASCII characters. There is a single excep-
tion: the transfer of waveforms with the command/query
“WAVEFORM?”, where the waveform may be expressed as a se-
quence of binary data values. Refer to Section 6 for a detailed
explanation of the format of waveforms.

ASCII data can have the form of character, numeric, string or
block data.

2 About Remote Control

Character data

Numeric Data

These are simple words or abbreviations for the indication of a
specific action.

BANDWIDTH_LIMIT ON The data value “ON” indicates that
the bandwidth limit should be
turned on, rather than off.

In some commands, where as many as a dozen different parame-
ters can be specified, or where not all parameters apply at the same
time, the format requires pairs of data values. The first one names
the parameter to be modified and the second gives its value. Only
those parameter pairs to be changed need to be indicated.

HARDCOPY_SETUP DEV,HP7470A,PORT,GPIB,PSIZE, A4
Three pairs of parameters are spe-
cified. The first specifies the device
as the H7470A plotter (or compat-
ible), the second indicates the
GPIB port and the third requests
the A4 format for paper size. While
the command “HARDCOPY_SET-
UP” allows many more parameters,
they are either not relevant for plot-
ters or they are left unchanged.

The numeric data type is used to enter quantitative information.
Numbers can be entered as integers, as fractions or in exponential
representation.

EA:VPOS -5 Move the displayed trace of Expand A down-
wards by 5 divisions.

C2:0FST 3.56 Set the DC offset of Channel 2 to 3.56 V.

TDIV 5.0E-6 = Adjust the time base to 5 psec/div.

Note: Numeric values may be followed by multipliers and units,
modifying the value of the numerical expression. The following
mnemonics are recognized:

About Remote Control 2

String Data

Block Data

RESPONSE MESSAGE
FORM

EX 1E18 Exa- PE 1E15 Peta-
T 1E12 Tera- G 1E9 Giga-
MA 1E6 Mega- K 1E3 kilo-
M 1E-3 milli- U 1E-6 micro-
N 1E-9 nano- PI 1E-12 pico-
F 1E-15 femto~ A 1E-18 atto-

For example, there are many ways of setting the time base of the
instrument to 5 psec/div:

TDIV SE-6 Exponential notation, without any
suffix.

TDIV 5 US Suffix multiplier “U” for 1E-6,
with the (optional) suffix “S” for
seconds.

TDIV 5000 NS
TDIV 5000E-3 US

This data type enables the transfer of a (long) string of characters
as a single parameter. String data are formed by simply enclosing
any sequence of ASCII characters between simple quotes.

MESSAGE ‘Connect probe to point J3’

The instrument displays this message in the Message field above
the grid.

These are binary data values coded in hexadecimal ASCI], i.e.
4-Dbit nibbles are translated into the digits 0,...9, A,...F and trans-
mitted as ASCII characters. They are only used for the transfer of
waveforms (command “WAVEFORM?”) and of the instrument
configuration (command “PANEL_SETUP”)

The instrument sends a response message to the controller, as an
answer to a query. The format of such messages is the same as that
of program messages, i.e. individual responses in the format of
commands, separated by semicolons <;> and ended by a termina-
tor. They can be sent back to the instrument in the form in which
they are received, and will be accepted as valid commands. In
GPIB response messages, the <NL> <EOI> terminator is always
used.

For example, if the controller sends the program message:

TIME_DIV?;TRIG_MODE NORM;C1:COUPLING? (terminator
not shown)

2 About Remote Control

10

the instrument might respond as follows:
TIME_DIV 50 NS;C1:COUPLING D50 (terminator not shown)

The response message only refers to the queries, i.e.
“TRIG_MODE” is left out. If this response is sent back to the
instrument, it is a valid program message for setting its time base to
50 nsec/div and the input coupling of Channel 1 to 50 Q.

Whenever a response is expected from the instrument, the control
program must instruct the GPIB or RS-232-C interface to read
from the instrument. If the controller sends another program mes-
sage without reading the response to the previous one, the
response message in the output buffer of the instrument is dis-
carded.

The instrument uses somewhat stricter rules for response messages
than for the acceptance of program messages. Whereas the con-
troller may send program messages in upper or lower case
characters, response messages are always returned in upper case.
Program messages may contain extraneous spaces or tabs (white
space), response messages do not. Whereas program messages
may contain a mixture of short and long command/query headers,
response messages always use short headers as a default. However,
the instrument can be forced with the command
“COMM_HEADER?” to use long headers or no headers at all. If
the response header is omitted, the response transfer time is mini-
mized, but such a response could not be sent back to the
instrument again. In this case suffix units are also suppressed in the
response.

If the trigger slope of Channel 1 is set to negative, the query
“C1:TRSL?” could yield the following responses:

C1:TRIG_SLOPE NEG header format: long
C1:TRSL NEG header format: short
NEG header format: off

Waveforms which are obtained from the instrument using the
query “WAVEFORM?” constitute a special kind of response mes-
sage. Their exact format can be controlled with the commands
“COMM_FORMAT” and “COMM_ORDER”, as explained in
Section 6.

GPIB OPERATION

GPIB STRUCTURE

INTERFACE
CAPABILITIES

This section describes how to remotely control the oscilloscope via
the GPIB. Topics discussed include interface capabilities, address-
ing, standard bus commands, and polling schemes.

The GPIB is like an ordinary computer bus, except that it inter-
connects independent devices via a cable bus whereas a computer
has its circuit cards interconnected via a backplane bus. The GPIB
carries program messages and interface messages:

® Program messages, often called device-dependent messages,
contain programming instructions, measurement results, in-
strument status and waveform data. Their general form is
described in Section 2.

® Interface messages manage the bus itself. They perform func-
tions such as initializing the bus, addressing and unaddressing
devices and setting remote and local modes.

Devices on the GPIB can be listeners, talkers, and/or controllers.
A talker sends program messages to one or more listeners. A con-
troller manages the flow of information on the bus by sending
interface messages to the devices.

The oscilloscope can be a talker or a listener, but not a controller.
The host computer, however, must be able to act as a listener,
talker and controller. For details on how the controller configures
the GPIB for specific functions, refer to the GPIB interface man-
ufacturer’s manual.

The interface capabilities of the oscilloscope include the following
IEEE 488.1 definitions:

AH1 Complete Acceptor Handshake
SH1 Complete Source Handshake

L4 Partial Listener Function

TS5 Complete Talker Function

SR1 Complete Service Request Function
RL1 Complete Remote/Local Function
DC1 Complete Device Clear Function
DT1 Complete Device Trigger

PP1 Parallel Polling: remote configurability
Co No Controller Functions

E2 Tri-state Drivers

11

3 GPIB Operation

ADDRESSING

GPIB SIGNALS

Data Lines

Handshake Lines

Interface Management Lines

12

Every device on the GPIB has an address. When the thumbwheel
address switches on the rear panel of the oscilloscope are set to a
value between 0 and 30, the instrument can be controlled via
GPIB. When the switches are set to above 30, the instrument can
execute talk~only operations on the GPIB, for example driving a
GPIB plotter. In this case no controller is present and the instru-
ment is directly connected to the plotter. Addresses above 30 also
enable the instrument to be controlled via the RS-232-C port.

The instrument reads the address switches once at power on, or
when the RESET button on the rear panel is pressed. If the ad-
dress is changed during operation, the instrument must be
powered again to enable the new address. The value of the GPIB
address appears in the menu “Auxiliary Setups”.

If the oscilloscope is addressed to talk, it will remain configured to
talk until a universal untalk command (UNT), its own listen ad-
dress (MLA), or another instrument’s talk address is received.

Similarly, if the oscilloscope is addressed to listen, it will remain
configured to listen until a universal unlisten command (UNL), or
its own talker address (MTA) is received.

The bus system consists of 16 signal lines and 8 ground or shield
lines. The signal lines are divided into 3 groups:

@ 8 data lines
@ 3 handshake lines
@ 5 interface management lines

The eight data lines, usually called DI01 through DI08, carry both
program and interface messages. Most of the messages use the
7-bit ASCII code, in which case DIO8 is unused.

These three lines control the transfer of message bytes between
devices. The process is called a three-wire interlocked handshake
and it guarantees that the message bytes on the data lines are sent
and received without transmission error.

The following five lines manage the flow of information across the
interface.

ATN (ATteNtion): The controller drives the ATN line true when
it uses the data lines to send interface messages such as talk and
listen addresses or a device clear (DCL) message. When ATN is
false, the bus is in the data mode for the transfer of program mes-
sages from talkers to listeners.

IFC (InterFace Clear): The controller sets the IFC line true to
initialize the bus.

GPIB Operation 3

1/0 Buffers

IEEE 488.1
STANDARD MESSAGES

REN (Remote ENable): The controller uses this line to place de-
vices in remote or local program mode.

SRQ (Service ReQuest): Any device can drive the SRQ line true
to asynchronously request service from the controller. This is the
equivalent of a single interrupt line on a computer bus.

EOI (End Or Identify): This line has two purposes. The talker
uses it to mark the end of a message string. The controller uses it to
tell devices to identify their response in a parallel poll (discussed
later in this section).

The instrument has a 256-byte input buffer and a 256-byte output
buffer. An incoming program message is not decoded before a
message terminator has been received. However, if the input buff-
er becomes full (because the program message is longer than the
buffer), the instrument starts analyzing the message. In this case
data transmission is temporarily halted, and the controller may
generate a timeout if the limit was set too low.

The IEEE 488.1 standard specifies not only the mechanical and
electrical aspects of the GPIB, but also the low-level transfer pro-
tocol, e.g. it defines how a controller addresses devices, turns
them into talkers or listeners, resets them or puts them in the re-
mote state. Such interface messages are executed with the
interface management lines of the GPIB, usually with ATN true.

All of these messages (except GET) are executed immediately
upon reception and not in chronological order with normal com-
mands.

Note: In addition to the IEEE 448.1 interface message standards,
the new IEEE 488.2 standard specifies some standardized pro-
gram messages, i.e. command headers. They are identified with a
leading asterisk <*> and are listed among the commands in Sec-
tion 5.

The command list in Section 5 does not contain any command for
clearing the input/output buffers or for setting the instrument to
the remote state. This is because such commands are already spe-
cified as IEEE 488.1 standard messages. Refer to the GPIB
interface manual of the host controller as well as to its support
programs which should contain special calls for the execution of
these messages.

The following describes those IEEE 488.1 standard messages
which go beyond mere reconfiguration of the bus and which have
an effect on the operation of the instrument.

13

3 GPIB Operation

Device Clear

Group Execute Trigger

Remote ENable

Local LOckout

Go To Local

14

In response to a universal Device CLear (DCL) or a Selected De-
vice Clear message (SDC), the oscilloscope clears the input/output
buffers, aborts the interpretation of the current command (if any)
and clears any pending commands. Status registers and status en-
able registers are not cleared. Although DCL has an immediate
effect it can take several seconds to execute this command if the
instrument is busy.

The Group Execute Trigger message (GET) causes the oscillo-
scope to arm the trigger system. It is functionally identical to the
“*TRG” command.

This interface message is executed when the controller holds the
Remote ENable control line (REN) true and configures the instru-
ment as a listener. The REMOTE LED on the front panel lights up
to indicate that the instrument is set to the remote mode. All the
front-panel controls are disabled except the left-hand menu but-
tons, the intensity controls and the LOCAL button. The menu
indications on the left-hand side of the screen no longer appear
since menus cannot now be operated manually. Whenever the
controller returns the REN line to false, all instruments on the bus
return to LOCAL. Individual instruments can be returned to LO-
CAL with the Go To Local message (see below).

As a rule, remote commands are only executed when the instru-
ment is in the remote state, whereas queries are always executed.
Local front—panel control may be regained by pressing the LO-
CAL push button, unless the instrument was placed in the Local
LOckout (LLO) mode.

The Local LOckout command (LLO) causes the LOCAL button
on the front panel of the oscilloscope to be disabled. The LLO
command can be sent in local or remote mode but only becomes
effective once the instrument has been set to the remote mode.

The Go To Local message (GTL) causes the instrument to return
to the local mode. All front-panel controls become active and the
menus on the left-hand side of the screen reappear. Thereafter,
whenever the instrument is addressed as a listener it will be imme-
diately set to the remote state again.

Note that a GTL message does not clear the local lockout if it was
set. Thus, whenever the instrument returns to the remote state the
local lockout mode would immediately be effective again.

A command string should not be immediately followed by a GTL
message. Since GTL is executed at once, the instrument may al-
ready be returned to the local state before the commands in the

GPIB Operation 3

InterFace Clear

PROGRAMMING
GPIB TRANSFERS

Configuring the
GPIB Hardware

Configuring the
GPIB Driver Software

input buffer are interpreted. Therefore, the instrument may refuse
to execute them if they require the instrument to be in REMOTE.
A safe way to ensure that all commands have been interpreted is to
append a query (e.g. “*STB?”) to the command string and to wait
for the response before sending a GTL.

The InterFace Clear message (IFC) initializes the GPIB but has no
effect on the operation of the oscilloscope.

To illustrate the GPIB programming concepts a number of exam-
ples written in BASICA are included in this section. It is assumed
that the controller is IBM-PC compatible, running under DOS,
and that it is equipped with a National Instruments? GPIB inter-
face card. GPIB programming with other languages such as C or
Pascal is quite similar.

If you use another computer or another GPIB interface, refer to
the interface manual for installation procedures and subroutine
calls similar to those described here.

Check that the GPIB interface is properly installed in the comput-
er. If it is not, follow the installation instructions of the interface
manufacturer. In the case of the National Instruments interface, it
is possible to modify the base 1/0 address of the board, the DMA
channel number and the interrupt line setting using switches and
jumpers. In our program examples, they are assumed to be left in
their default positions.

Connect the oscilloscope to the computer with a GPIB interface
cable. Set the GPIB address on the rear of the instrument to the
required value. The program examples assume that it is set to 4.
Remember to power the instrument up after setting the GPIB ad-
dress.

The host computer needs an interface driver which handles the
transactions between the user’s programs and the interface board.
In the case of the National Instruments interface, the installation
procedure:

® copies the GPIB handler GPIB.COM into the boot directory.

® modifies the DOS system configuration file CONFIG.SYS to
declare the presence of the GPIB handler.

2. National Instruments Corporation, 12109 Technology Boulevard, Austin, Texas 78727

15

3 GPIB Operation

Simple Transfers

16

® creates a sub-directory GPIB-PC.

installs in GPIB-PC a number of files and programs which are
useful for testing and reconfiguring the system, and for writing
user programs.

The following files in the sub-directory GPIB--PC are of particular
use:

IBIC.EXE allows interactive control of the GPIB via functions en-
tered at the keyboard. Use of this program is highly recommended
to anyone who is not familiar with GPIB programming or with the
oscilloscope’s remote commands. An example of the use of
IBIC.EXE is shown in Appendix A.

DECL.BAS is a declaration file that contains code to be included
at the beginning of any BASICA application program. Simple
application programs can be quickly written by appending the
user’s instructions to DECL.BAS and executing the complete file.

IBCONF.EXE is an interactive program which allows inspection
or modification of the current settings of the GPIB handler. To run
IBCONF.EXE, refer to the National Instruments user’s manual.

In the program examples in this section, it is assumed that the
National Instruments GPIB driver GPIB.COM is in its default
state, i.e. that the user has not modified it with IBCONF.EXE.
This means that the interface board can be referred to by the sym-
bolic name 'GPIBO’ and that devices on the GPIB bus with
addresses between 1 and 16 can be called by the symbolic names
'DEV1’ to 'DEV16’.

Note: If you have a National Instruments PC2 interface card rath-
er than PC2A, you must run IBCONF to declare the presence of
this card rather than the default PC2A.

For a large number of remote control operations it is sufficient to
use just 3 different subroutines (IBFIND, IBRD and IBWRT) pro-
vided by National Instruments. The following complete program
reads the time-base setting of the oscilloscope and displays it on
the terminal:

1-99 <DECL.BAS>
100 DEV$="DEV4”

110 CALL IBFIND(DEVS$,SCOPE%)
120 CMD$="TDIV?"

130 CALL IBWRT(SCOPE%,CMDS$)
140 CALL IBRD(SCOPE%,RDS$)
150 PRINT RDS$

160 END

GPIB Operation 3

Explanation

Lines 1 - 99 are a copy of the file DECL.BAS supplied by National
Instruments. The first 6 lines are required for the initialization of
the GPIB handler. The other lines are declarations which may be
useful for larger programs, but are not really required code. The
sample program above only uses the strings CMD$ and RD$ which
are declared in DECL.BAS as arrays of 255 characters.

Note: DECL.BAS requires access to the file BIB.M during the
GPIB initialization. BIB.M is one of the files supplied by National
Instruments, and it must exist in the directory currently in use.

Note: The first 2 lines of DECL.BAS each contain a string
“XXXXX” which must be replaced by the number of bytes which
determine the maximum workspace for BASICA (computed by
subtracting the size of BIB.M from the space currently available in
BASICA). For example, if the size of BIB.M is 1200 bytes and
when BASICA is loaded it reports “60200 bytes free”, you should
replace “XXXXX” by the value 59000 or less.

Lines 100 and 110 open the device “DEV4” and associate with it
the descriptor “SCOPE%”. All I/O calls from now on will refer to
“SCOPE%” . The default configuration of the GPIB handler recog-
nizes “DEV4” and associates with it a device with GPIB address 4.
If you want to use another GPIB address between 1 and 16, use
the string “DEVx” with x = 1...16. If you want to use another
name, run IBCONF.EXE to declare this name to the handler.

Lines 120 and 130 prepare the command string TDIV? and trans-
fer it to the instrument. The command instructs it to respond with
the current setting of the time base.

Line 140 reads the response of the instrument and places it into
the character string RDS§.

Line 150 displays the response on the terminal.

When running this sample program, the oscilloscope will automati-
cally be set to the remote state when IBWRT is executed, and will
remain in that state. Pressing the LOCAL button on the front pan-
el will return the oscilloscope to local mode if the GPIB handler
was modified to inhibit Local LOckout (LLO).

Here is a slightly modified version of the sample program which
checks if any error occurred during GPIB operation:

17

3 GPIB Operation

Some Additional
Driver Calls

18

1-99 <DECL.BAS>

100 DEV$="DEV4”

110 CALL IBFIND(DEVS$,SCOPE%)

120 CMD$="TDIV?”

130 CALL IBWRT(SCOPE%,CMDS$)

140 IF ISTA% < 0 THEN GOTO 200

150 CALL IBRD(SCOPE%,RDS$)

160 IF ISTA% < 0 THEN GOTO 250

170 PRINT RDS$

180 IBLOC(SCOPE%)

190 END

200 PRINT “WRITE ERROR = ”;IBERR%
210 END

250 PRINT “READ ERROR = ”;IBERR%
260 END

The GPIB status word ISTA%, the GPIB error variable IBERR%
and the count variable IBCNT% are defined by the GPIB handler
and are updated with every GPIB function call. Refer to the Na-
tional Instruments user’s manual for details. The sample program
above would report if the GPIB address of the instrument was set
to a value other then 4. Line 180 resets the instrument to local with
a call to the GPIB routine IBLOC.

Example 2 in Appendix A provides a more useful program which
enables interactive setting and inspection of the front—panel con-
trols as well as archiving and recalling of waveforms. Note that this
program is written with just 7 different GPIB calls.

IBLOC is used to execute the IEEE 488.1 standard message Go
To Local (GTL), i.e. it returns the instrument to the local state.
The programming example above shows its use.

IBCLR executes the IEEE 488.1 standard message Selected De-
vice Clear (SDC).

IBRDF and IBWRTTF allow data to be read from GPIB to a file
and data to be written from a file to GPIB respectively. Transfer-
ring data directly to or from a storage device does not limit the size
of the data block, but it may be slower than transferring to the
computer memory. Example 2 in Appendix A shows the use of
these calls.

IBRDI and IBWRTI allow data to be read from GPIB to an inte-
ger array and data to be written from an integer array to GPIB.
Since the integer array allows storage of up to 64 kilobytes (in BA-
SIC), IBRDI and IBWRTI should be used for the transfer of large

GPIB Operation 3

PROGRAMMING
SERVICE REQUESTS

data blocks to the computer memory, rather than IBRD or IBWRT
which are limited to 256 bytes by the BASIC string length. Note
that IBRDI and IBWRTT only exist for BASIC, since the function
calls IBRD and IBWRT for more modern programming languages,
such as C, are much less limited in the data block size.

IBTMO can be used to change the time-out value during program
execution. The default value of the GPIB driver is 10 seconds, e.g.
if the instrument does not respond to a IBRD call, IBRD will return
with an error after the specified time.

IBTRG executes the IEEE 488.1 standard message Group Ex-
ecute Trigger (GET), which causes the oscilloscope to arm the
trigger system.

National Instruments supply a number of additional function calls.
In particular, it is possible to use the so-called board level calls
which allow a very detailed control of the GPIB. The use of such
calls is shown in Example 3 of Appendix A.

When an oscilloscope is used in a remote application, events often
occur asynchronously, i.e. at times that are unpredictable for the
host computer. The most common case is waiting for a trigger after
the instrument has been armed. The controller must wait until the
acquisition is finished before it can read the acquired waveform.
The simplest way of checking if a certain event has occurred is by
continuously or periodically reading the status bit associated with it
until the required transition is detected. Continuous status bit poll-
ing is described in more detail in the sub-section “Instrument
Polls”. For a complete explanation of the status bytes refer to Sec-
tion 7.

A potentially more efficient way of detecting events occurring in
the instrument is the use of the Service Request (SRQ). This GPIB
interrupt line can be used to interrupt program execution in the
controller. Therefore, the controller can execute other programs
while waiting for the instrument. Unfortunately, not all interface
manufacturers support the programming of interrupt service rou-
tines. In particular, National Instruments only supports the SRQ
bit within the ISTA% status word. This requires the user to contin-
uously or periodically check this word, either explicitly or with the
function call IBWAIT. In the absence of real interrupt service rou-
tines the use of SRQ may not be very advantageous.

In the default state, after power-on, the Service ReQuest is dis-
abled. The SRQ is enabled by setting the Service Request Enable
register with the command “*SRE” and specifying which event
should generate an SRQ. The oscilloscope will interrupt the con-

19

3 GPIB Operation

Example 1

Example 2

20

troller as soon as the selected event(s) occur by asserting the SRQ
interface line. If several devices are connected to the GPIB, the
controller may have to identify which instrument caused the inter-
rupt by serial polling the various devices.

Note: The SRQ bit is latched until the controller reads the STatus
Byte Register (STB). The action of reading the STB with the com-
mand “*STB?” clears the register contents except the MAV bit
(bit 4) until a new event occurs. Service requesting may be dis-
abled by clearing the SRE register (“*SRE 0”).

To assert SRQ in response to the events “new signal acquired”
or “return-to-local” (pressing the front-panel button LO-
CAL).

These events are tracked by the INR register which is reflected in
the SRE register as the INB summary bit in position 0. Since the bit
position 0 has the value 1, the command “*SRE 1” enables the
generation of SRQ whenever the INB summary bit is set.

In addition, the events of the INR register which may be summa-
rized in the INB bit must be specified. The event “new signal
acquired” corresponds to INE bit 0 (value 1) while the event “re-
turn—-to-local” is assigned to INE bit 2 (value 4). The total sum is
1+4=5. Thus the command “INE 5” is needed.

CMDS$="INE 5;*SRE 1”
CALL IBWRT(SCOPE%,CMDS$)

To assert SRQ when soft key 10 is pressed.

The event “soft key 10 pressed” is tracked by the URR register.
Since the URR register is not directly reflected in STB but only in
the ESR register (URR, bit position 6), the ESE enable register
must be set first with the command “*ESE 64” to allow the URQ
setting to be reported in STB. An SRQ request will now be gener-
ated provided that the ESB summary bit (bit position 5) in the SRE
enable register is set (“*SRE 32”).

CMDS$="*ESE 64;*SRE 32”
CALL IBWRT(SCOPE%,CMDS$)

GPIB Operation 3

INSTRUMENT POLLS

Continuous Poll

State transitions occurring within the instrument can be remotely
monitored by polling selected internal status registers. This sub—
section discusses a number of polling methods which may be used
to detect the occurrence of a given event.

1. Continuous poll
2. Serial poll

3. Parallel poll

4. *IST poll

To emphasize the differences between these methods, the same
example will be presented in each case, i.e. determining if a new
acquisition has taken place. By far the simplest poll is the continu-
ous poll. The other methods only make sense if interrupt service
routines (servicing the SRQ line) are supported or if multiple de-
vices on GPIB must be monitored simultaneously.

In continuous polling a status register is continuously monitored
until a transition is observed. This is the most straightforward
method for detecting state changes but may be impracticable in
some situations, especially in multiple device configurations.

In the following example, the event “new signal acquired” is ob-
served by continuously polling the INternal state change Register
(INR) until the corresponding bit (in this case bit 0, i.e. value 1) is
non-zero to indicate that a new waveform has been acquired.
Reading INR clears it at the same time so that there is no need for
an additional clearing action after a non-zero value has been de-
tected. The command “CHDR OFF” instructs the instrument to
omit any command headers when responding to a query. This sim-
plifies the decoding of the response. The instrument would
therefore send “1” rather than “INR 1”.

CMD$="CHDR OFF”
CALL IBWRT(SCOPE%,CMDS$)

MASK% = 1 ’New Signal Bit has value 1
LOOP% = 1
WHILE LOOP%

CMD$="INR?"

CALL IBWRT(SCOPE%,CMD$)

CALL IBRD(SCOPE%,RDS$)

NEWSIG% = VAL(RD$) AND MASK%

IF NEWSIG% = MASK% THEN LOOP% = 0
WEND

21

3 GPIB Operation

Serial Poll

22

Serial polling takes place once the SRQ interrupt line has been
asserted. The controller examines which instrument has generated
the interrupt by inspecting the SRQ bit in the STB register of each
instrument. Because service request is based on an interrupt mech-
anism, serial polling offers a reasonable compromise in terms of
servicing speed in multiple device configurations.

In the following example, the command “INE 1” enables the
event “new signal acquired” to be reported in the INR to the INB
bit of the status byte STB. The command “*SRE 1” enables the
INB of the status byte to generate an SRQ whenever it is set. The
function call IBWAIT instructs the computer to wait until one of
three conditions occur: &H8000 in the mask (MASK%) corre-
sponds to a GPIB error, &H4000 to a time-out error and &H0800
to the detection of RQS (ReQuest for Service generated by the
SRQ bit).

Whenever IBWAIT detects RQS it automatically performs a serial
poll to find out which instrument generated the interrupt. It will
only exit if there was a time-out or if the instrument “SCOPE%”
generated SRQ. The additional function call IBRSP fetches the
value of the status byte which may be further interpreted. For this
example to function properly the value of ’Disable Auto Serial
Polling’ must be set 'off’ in the GPIB handler (use IBCONF.EXE
to check).

CMDS$="*CLS; INE 1; *SRE 1”

CALL IBWRT(SCOPE%,CMDS$)

MASK% = &HC800

CALL IBWAIT(SCOPE%,MASK%)

IF (IBSTA% AND &HC000) <> 0 THEN PRINT “GPIB or
Time-out Error” : STOP

CALL IBRSP(SCOPE%,SPR%)

PRINT “Status Byte = 7, SPR%

Note: After the serial poll is completed, the RQS bit in the STB
status register is cleared. Note that the other STB register bits
remain set until they are cleared by means of a “*CLS” command
or the instrument is reset. If these bits are not cleared, they cannot
generate another interrupt.

Serial polling is only an advantage if there are several instruments
that may need attention. Board-level function calls can deal simul-
taneously with several instruments attached to the same interface
board. Refer to the National Instruments user’s manual.

GPIB Operation 3

Parallel Poll

Parallel polling is only an advantage if there are several instru-
ments that may need attention.

In parallel polling, the controller simultaneously reads the Individ-
ual STatus bit (IST) of all the instruments to determine which one
needs service. Since parallel polling allows up to eight different
instruments to be polled at the same time, parallel polling is the
fastest way to identify state changes of instruments supporting this
capability.

When a parallel poll is initiated, each instrument returns a status
bit via one of the DIO data lines. Devices may respond either indi-
vidually using a separate DIO line or collectively on a single data
line. Data line assignments are made by the controller via a Paral-
lel Poll Configure (PPC) sequence.

In the following example, the command “INE 1” enables the
event “new signal acquired” in the INR to be reported to the INB
bit of the status byte STB. The PaRallel poll Enable register (PRE)
determines which events will be summarized in the IST status bit.
The command “*PRE 1” enables the INB bit to set the IST bit
whenever it is set. Once parallel polling has been established, the
parallel poll status is examined until a change on data bus line
DI02 takes place.

Stage 1: Enable the INE and PRE registers, configure the con-
troller for parallel poll and instruct the oscilloscope to respond
on data line 2 (DI02)

CMD18§="?_@$”

CALL IBCMD(BRD0%,CMD1$)

CMD3$="INE 1;*PRE 1”

CALL IBWRT(BRD0%,CMD$)

CMD4$=CHRS$ (&H5)+CHRS$ (&H69)+7?”

CALL IBCMD(BRD0%,CMD4$)

23

3 GPIB Operation

*IST Poll

24

Stage 2: Parallel poll the instrument until DI02 is set

LOOP% = 1
WHILE LOOP%

CALL IBRPP(BRD0%,PPR%)

IF (PPR% AND &H2) = 2 THEN LOOP% = 0
WEND

Stage 3: Disable parallel polling (hex 15) and clear the parallel
poll register

CMD5$=CHRS (&H15)

CALL IBCMD(BRD0%,CMD5$)
CALL IBCMD(BRD0%,CMD1$)
CMD$="*PRE 0"

CALL IBWRT(BRD0%,CMDS$)

Note I: In the example above, board-level GPIB function calls
are used. It is assumed that the controller (board) and oscillo-
scope (device) are respectively located at addresses 0 and 4. The
listener and talker addresses for the controller and oscilloscope
are:

Logic device Listener address Talker address

controller 32.(ASCli<space>) 64 (ASCIl @)
oscilloscope 32+4=36 (ASCII §) 64+4=68 (ASCII D)

Note 2: The characters “?” and “_” appearing in the command
strings stand for unlisten and untalk respectively. They are used to
set the devices to a “known” state.

Note 3: To shorten the size of the program examples, device talk-
ing and listening initialization instructions have been grouped into
character chains. They are:

CMD1$ = “?_@$” ’Unlisten, Untalk, PC talker, DSO listener

Note 4: The remote message code for executing a parallel response
in binary form is 01101PPP where PPP specifies the data line.
Since data line 2 is selected, the identification code is 001 which
results in the code 01101001 (binary) or &H69 (hex). See Table
38 of the IEEE 488-1978 Standard for further details.

The state of the Individual STatus bit (IST) returned in parallel
polling can also be read by sending the “*IST?” query. To enable
this poll mode, the oscilloscope must be initialized as for parallel
polling by writing into the PRE register. Since *IST polling emu-
lates parallel polling, this method is applicable in all instances
where parallel polling is not supported by the controller.

GPIB Operation 3

DRIVING A HARD-COPY
DEVICE

Plotting/Printing without
a GPIB Controller

In the following example, the command “INE 1” enables the
event “new signal acquired” in the INR to be reported to the INB
bit of the status byte STB. The command “*PRE 1” enables the
INB bit to set the IST bit whenever it is set. The command “CHDR
OFF” suppresses the command header in the response of the in-
strument, simplifying the interpretation. The status of the IST bit is
then continuously monitored until it is set by the instrument.
CMD$="CHDR OFF; INE 1; *PRE 1”
CALL IBWRT(SCOPE%,CMD$)
LOOP% = 1
WHILE LOCP%
CMD$="*IST?”
CALL IBWRT(SCOPE%,CMD$)
CALL IBRD(SCOPE%,RDS$)
IF VAL(RDS$) = 1 THEN LOOP% = 0
WEND

The oscilloscope can be interfaced to a wide range of plotters and
printers and be instructed to directly plot or print the screen con-
tents onto these devices. The devices supported by the unit are
listed with the command “HARDCOPY_SETUP” in Section §.

When the hard-copy device is connected to the GPIB two differ-
ent configurations should be considered depending on whether or
not a GPIB controller is available.

When only the oscilloscope and the hard-copy device are con-
nected to the GPIB, the oscilloscope must be configured as
talker—only and the hard-copy device as listener—only to ensure
proper data transfer. The oscilloscope can be configured as a
talker-only by using the thumbwheel switch at the rear of the in-
strument to select an address larger than 30. The hard-copy
device manufacturer usually specifies an address which forces the
instrument into the listening mode.

@ Select the oscilloscope’s address to be larger than 30.
@ Switch on the oscilloscope.

® Configure the “Hardcopy” sub menu in the “Auxiliary Set-
ups” menu specifying “GPIB” as hard copy port.

@ Put the hard-copy device in listener—-only mode.

® Press the screen dump button on the front panel of the in-
strument.

25

3 GPIB Operation

Plotting/Printing with
a GPIB Controller

1. Data read by controller
and sent to printer/plotter

2. Oscilloscope sends data to
controller and printer/plotter

26

If a controller is connected to the GPIB, data transfers must be
supervised by the controller. The oscilloscope must be set to an
address between 0 and 30 which differs from the controller’s and
the hard-copy device’s address. Different schemes can be used to
transfer the screen contents:

1. The controller reads the data into internal memory and then
sends them to the printer/plotter. This alternative can be
done with simple high-level GPIB function calls.

2. The oscilloscope sends data to both the controller and the
printer/plotter.

3. The controller goes into a standby state. The oscilloscope
becomes a talker and sends data directly to the printer/plot-
ter.

The controller stores the full set of printer/plotter instructions and
sends them afterwards to the graphics device. This method is the
most straightforward way of transferring screen contents but it re-
quires a large amount of buffer storage (110K for 4 traces).

CMDS$ = “SCDP”

CALL IBWRT(SCOPE%,CMDS$)
FILE$="PLOT.DAT”

CALL IBRDF(SCOPE%,FILES$)
CALL IBWRTF(PLOTTER%,FILES$)

The oscilloscope puts the printer/plotter instructions on to the bus.
The data is directly plotted out and saved in scratch memory in the
controller. The contents of the scratch file can be deleted later on.

Stage 1: Controller talker, oscilloscope listener. Issue the
screen dump command

CMD1$="?_@$”: CALL IBCMD(BRD0%,CMD18$)
CMD$="SCDP”: CALL IBWRT(BRD0%,CMDS$)
Stage 2: Oscilloscope talker, controller and plotter listeners.
Plot data while storing data in scratch file SCRATCH.DAT
CMD2$="? D%”: CALL IBCMD(BRD0%,CMD28$)
FILE$="SCRATCH.DAT”: CALL IBRDF(BRD0%,FILE$)

GPIB Operation 3

3. Oscilloscope talks directly
to plotter/printer

The controller goes into stand-by and resumes GPIB operations
once the data have been plotted, that is when an EOI is detected.

Stage 1: Controller talker, oscilloscope listener. Issue the
screen dump command

CMD1$="?_@$”: CALL IBCMD(BRD0%,CMD1$)

CMD$="SCDP”: CALL IBWRT(BRD0%,CMDS$)
Stage 2: Oscilloscope talker, plotter listener. Put controller in
stand-by

CMD2$="?_D%”: CALL IBCMD(BRD0%,CMD28$)

V%=1: CALL IBGTS(BRD0%,V%)
Note 1: In schemes 2 and 3, board-level GPIB function calls are
used. It is assumed that the controller (board), the oscilloscope
and the plotter are respectively located at addresses 0, 4 and 5.

The listener and talker addresses for the controller, oscilloscope
and plotter are:

Logic device Listener address Talker address
controller 32 (ASCll<space>) 64 (ASCH @)
oscilloscope 32+4=36 (ASCII $§) 64+4=68 (ASCII D)

hard-copy dev. 32+5=37 (ASCII %) 64+5=69 (ASCII E)

Note 2: The characters “?” and “_" appearing in the command
strings stand for unlisten and untalk respectively. They are used to
set the devices to a “known” state.

Note 3: To shorten the size of the program examples, device talk-
ing and listening initialization instructions have been grouped into
character chains. They are:

CMD1$ = “?_@$” ’Unlisten, Untalk, PC talker, DSO listener
CMD2$ = “?_ D” ’Unlisten, Untalk, PC listener, DSO talker

27

4

RS-232-C OPERATION

INTRODUCTION

Notation

Example

RS-232-C
PIN ASSIGNMENTS

LeCroy oscilloscopes may be remotely controlled using a host, ei-
ther a terminal or a computer, via the RS-232-C port. For this
purpose the oscilloscope must be set at'an address higher than 30
using the thumbwheel switch at the rear of the instrument.

All the commands described in Section 5 are supported but wave-
form transfer is only possible in HEX mode. The default value
for COMM_FORMAT is set appropriately. The syntax of the re-
sponse to WF? is identical to the GPIB case.

In this section some special RS~232~C commands are defined ei-
ther for configuring the oscilloscope, or simulating GPIB 488.1
messages such as setting the oscilloscope into remote or local
modes.

Throughout this section, characters which cannot be printed in
ASCII will be represented by their mnemonics.

<LF> is the ASCII line feed character whose decimal value is
10

<BS> is the ASCII backspace character whose decimal value
is 8

CTRL_U means that the control key and the U key are pressed
simultaneously.

The remote RS-232-C pin assignments (indicated on the rear
panel) are as follows:

Pin # Description
2 TxXxD Transmitted data (from the oscilloscope).
3 RXD Received data (to the oscilloscope).

4 RTS Request to send (from the oscilloscope).
If the software Xon/Xoff handshake is se-
lected it is always TRUE.
Otherwise (hardware handshake) it is TRUE
when the oscilloscope is able to receive char-
acters and FALSE when the oscilloscope is
unable to receive characters.

5 CTS Clear to send (to the oscilloscope).
When true, the oscilloscope can transmit,
when false, transmission stops. It is used for
the oscilloscope output hardware handshake.

20 DTR Data terminal ready (from oscilloscope).
Always TRUE.

29

4 RS-232-C Operation

RS-232-C
CONFIGURATION

Echo of Received Characters
by the Oscilloscope

Handshake Control

30

1 GND Protective Ground.
7 SIG GND Signal Ground.

The RS-232-C port is configured in full duplex. This means that
the two sides (i.e. the controller and the oscilloscope) can both
send and receive messages at the same time. However, when the
oscilloscope receives a new command, it stops outputting.

Transmission of long messages to the oscilloscope should be done
while the oscilloscope is in a triggered mode with no acquisition
in progress. This is especially important when sending waveforms
or front—panel setups into the oscilloscope.

The behavior of the RS-232-C port may be set according to the
user’s needs. For this purpose, in addition to the basic setup on
the front-panel menu there are “immediate commands” as well
as a special command “COMM_RS232”. Immediate commands
consist of the ASCII ESCape character <ESC> (whose decimal
value is 27), followed by another character. Such commands are
interpreted as soon as the second character has been received.

Note: The RS-232-C baud rate, parity, character length and
number of stop bits are among the parameters that are saved or
recalled by the front-panel “SAVE” or “RECALL” button, or by
the remote commands “*SAV”, “*RCL” or “PANEL_SETUP”.
When recalling, care must be taken to ensure that these parame-
ters are set at the same value as the actual ones. Otherwise, the
host may no longer be able to communicate with the oscilloscope
and a manual reconfiguration would be necessary.

The serial port may echo the received characters. Echo is useful if
the oscilloscope is attached to a terminal. Echoing can be turned
on or off by sending the two character sequence <ESC>] or
<ESC>| respectively. Echoing is on by default.

Note: The host must not echo characters received from the oscillo-
scope.

When the oscilloscope input buffer becomes almost full, the in-
strument sends a handshake signal to the host telling it to stop
transmitting. When this buffer has enough room to receive more
characters another handshake signal will be sent. The handshake
signals are either the CTRL-S (or <XOFF>) and CTRL-Q
(<XON>) characters or a signal level on the RTS line (pin 4). This
is selected by sending the two-character sequence <ESC>) for
XON/XOFF handshake - this is the default — or <ESC>(for RTS
handshake.

RS-232-C Operation 4

Editing Features

Message Terminators

Examples

The flow of characters coming from the oscilloscope may be con-
trolled either by a signal level on the CTS line (pin 5) or by the
<XON>/<XOFF> pair of characters.

When the oscilloscope is directly connected to a terminal, the fol-
lowing features will facilitate the correction of typing errors:

<BS> or <DELETE> Delete the last character.
CTRL_U Delete the last line.

“Message terminators” are markers that indicate to the receiver
that a message has been completed.

On input to the oscilloscope, the Program Message Terminator
is one character which can be selected by the user. A good choice
would be a character that is never used for anything else. The
character is chosen using the command COMM_RS232 and the
keyword EI. The default Program Message Terminator is the
ASCII character <CR>, whose decimal value is 13.

The oscilloscope appends a Response Message Terminator to the
end of each of its responses. It is a string, like a computer prompt,
chosen by the user. This string must not be empty. The default
Response Message Terminator is “\n\r” which means
<LF><CR>.

(1) COMM_RS232 EI3

This command informs the oscilloscope that each message it
receives will be terminated with the ASCII character <ETX>
which corresponds to 3 in decimal.

(2) COMM_RS232 EO,"\r\nEND\r\n”
This command indicates to the oscilloscope that it must ap-
pend the string “\r\nEND\r\n” to each response.

After these settings, a host command will look like:
TDIVI?<ETX>

The oscilloscope responds:

TDIV 1. S
END

Note: Having sent a COMM_RS232 command, the host must wait
for the oscilloscope to change its behavior before sending a com-
mand in the new mode. A safe way to do this is to include a query
on the line which contains the COMM _RS232 command and wait
until the response is received. For example,

COMM _RS232 EI3; *STB?

31

4 RS§-232-C Operation

SRQ Message

Example

Long Line Splitting

Example

Remarks

32

Each time the Master Summary Status (MSS) bit of the STatus
Byte (STB) is set, the SRQ message (a string of characters) is sent
to the host to indicate that the oscilloscope requests service. The
RS-232-C SRQ message has the same meaning as the GPIB SRQ
message. If the string is empty, no message will be sent. This is the
default setting. Note that no response message terminator is added
at the end of the SRQ message.

COMM_RS232 SRQ,”"\r\n\nSRQ\r\n\a"
When the MSS bit is set, the oscilloscope will send

a <CR> followed by 2 <LF>s
SRQ
a <CR> followed by 1 <LF>
and the buzer will sound.

Line splitting is a feature provided for hosts that cannot accept
lines with more than a certain number of characters. The oscillo-
scope may be configured to split responses into many lines. This
feature is very useful for waveform or front—panel setup transfers
although it is applicable to all response messages. Two parameters
control this feature:

Line Separator: Off messages will not be
split into lines

<CR>,<LF> or <CR><LF> possible line termi-
nators.

Line length: the maximum number of characters in a line.

COMM_RS232 LS,LF,LL,40

The line separator is the ASCII character <LF>, the line is a maxi-
mum of 40 characters long (excluding the line separator).

If the oscilloscope receives the command PNSU?, it may answer:

PNSU #9000001496

AAAA5555000655AA403000580019000000000001
000000000000000000000000000C1B0100580000
00

Long commands sent to the oscilloscope may not be split into
lines. If a command sent to the oscilloscope is the response to a
previous query, the line split characters (<LF> and/or <CR>) must
be removed.

RS§-232-C Operation 4

COMMANDS SIMULATING

GPIB COMMANDS

<ESC>C or <ESC>c¢
Device clear command.

<ESC>R or <ESC>r
Set to remote command
(REN)

<ESC>L or <ESC>]
Set to local command

<ESC>F or <ESC>f
Set local lockout command

<ESC>T or <ESC>t
Trigger command (GET)

This also applies to line split characters inside strings sent to the
oscilloscope.

However, hex-ASCII data sent to the oscilloscope may contain
line split characters. If you wish to use line splitting, ensure that
neither the input message terminator characters nor the line split
characters occur in the data.

This command clears the input and output buffers. It has the same
meaning as the GPIB DCL or SDC interface messages.

This command puts the oscilloscope into the remote mode. Its
function is the same as GPIB asserting the REN line and setting the
oscilloscope to listener.

This command puts the oscilloscope into local mode. It clears local
lockout. It has the same function as GPIB setting the REN line to
false.

This command disables the front-panel “LOCAL” button either
immediately if the oscilloscope is already in the remote mode or
later when the oscilloscope is next set to remote control. This dis-
abling of the front-panel “LOCAL” button is called “Local
Lockout” and can only be cancelled with the <ESC>L command.
<ESC>F has the same meaning as the GPIB LLO interface mes-
sage.

This command rearms the oscilloscope while it is in “SINGLE” or
in “SEQUENCE” mode (valid only while the oscilloscope is in the
remote mode). It has the same meaning as the “*TRG” com-
mand, and also the same meaning as the GPIB GET interface
message.

33

S

SYSTEM COMMANDS

ORGANIZATION

COMMAND SUMMARY

Acquisition

Communication

This section of the manual lists all commands and queries recog-
nized by the oscilloscope. For easy reference the listings are
arranged in alphabetical order. Each command starts on a new
page and the name (header) of the command is given in both the
long and short forms. Below each name (header) it is indicated
whether it denotes a command only, a command as well as a
query, or a query only. For those headers that may be used to
command an action, for example to modify a setup parameter, or
to obtain some information such as the current value of a setup
parameter, the query form is derived by appending a question
mark (?) immediately to the header without intervening spaces.

The description of each command starts with a short explanation
of the function performed by it, followed by a presentation of the
formal syntax. In the formal syntax the header appears in mixed
mode characters with the characters used to construct the short
form shown in upper case.

Where applicable, the syntax of the query form is given along with
the format of the response the oscilloscope will produce.

For most commands the description terminates with a short exam-
ple illustrating a typical use of the command. The GPIB examples
assume that the controller is equipped with a National Instruments
interface board, and they show calls to the National Instruments

interface subroutines in BASIC. The device name of the oscillo-
scope has been defined as “SCOPE%”.

The following is an overview of the commands grouped according
to their functionality.

To control the acquisition of waveforms:
ARM_ACQUISITION, AUTO_SETUP, BANDWIDTH_LIMIT,
INTERLEAVED, SAMPLE_CLOCK, SEGMENTS, STOP,
*TRG, WAIT.

To select vertical input parameters to capture waveforms:
ATTENUATION, COUPLING, OFFSET, VOLT_DIV.

To select time-base parameters to capture waveforms:
TIME_DIV, TRIG_DELAY.

To select trigger conditions to capture waveforms:

TRIG_COUPLING, TRIG_LEVEL, TRIG_MODE,
TRIG_PATTERN, TRIG_SELECT, TRIG_SLOPE.

To set communication characteristics:

COMM_FORMAT, COMM_HEADER, COMM_HELP,
COMM_ORDER, COMM_RS232.

35

5 System Commands

Cursor

Display

Function

Hard Copy

Save/Recall Setup

Status

Waveform Transfer

Miscellaneous

36

To perform measurements:

CURSOR_MEASURE, CURSOR_SET, CURSOR_VALUE?,
PARAMETER_VALUE?, XY_CURSOR_ORIGIN,
XY_CURSOR_SET, XY_CURSOR_VALUE?.

To display waveforms:

DISPLAY, DUAL_ZOOM, GRID, HOR_MAGNIFY,
HOR_POSITION, INTENSITY, MULTI_ZOOM, SELECT,
TRACE, VERT_MAGNIFY, VERT_POSITION, XY_ASSIGN,
XY_DISPLAY, ZOOM.

To display messages to a local user:

CALL_HOST, KEY, MESSAGE.

To perform mathematical operations on waveforms:
DEFINE, FUNCTION_RESET, FUNCTION_STATE.

To plot or print the contents of the display screen:

HARDCOPY_SETUP, HARDCOPY_TRANSMIT,
SCREEN_DUMP.

To presei‘ve and restore front-panel settings:
PANEL_SETUP, *RCL, *RST, *SAV.

To obtain status information and set up service requests:

ALL_STATUS?, *CLS, CMR?, DDR?, *ESE, *ESR?, EXR?,
INE, INR?, *IST?, *OPC, *PRE, *SRE, *STB?, URR?, *WAI.

To preserve and restore waveforms:

INSPECT?, STORE, TEMPLATE?, WAVEFORM,
WAVEFORM_SETUP, WAVEFORM_TEXT.

To control the calibration and test the instrument:
AUTO_CALIBRATE, *CAL?, *TST?.

To control the real-time clock:
DATE.

To control the built-in buzzer:
BUZZER.

To identify the instrument:
*IDN?, *OPT?.

System Commands 5

COMMAND EXECUTION

COMMAND NOTATION

Before attempting to execute a command or query, the oscillo-
scope scans it to verify its correctness and that sufficient
information is given to perform the requested action. To protect
the local user from changes in the oscilloscope’s behavior which
are beyond his control, the remote user must set the oscilloscope
to the remote state to execute commands that affect the operation
of the instrument as an oscilloscope. If such a command is re-
ceived while the oscilloscope is operating in the local state, an
execution permission error is generated and the execution of the
command is denied. Vice versa, the local user cannnot interfere
with the remote user because all front—panel controls are disabled
while the oscilloscope is in the remote state.

Since interrogating the oscilloscope does not change its internal
state, it may be queried at any time, independently of local or
remote operation. There are only two exceptions to this rule: the
queries *CAL? and *TST? both recalibrate the oscilloscope and
are therefore executed in the remote state only.

Commands that only affect the remote behavior are executed in-
dependently of whether the oscilloscope is in the local or remote
state. In this category are all commands that modify communica-
tion parameters (COMM_FORMAT, COMM_HEADER,
COMM_HELP, COMM_ORDER, COMM_RS232), all com-
mands affecting status information (*CLS, *ESE, INE, *OPC,
*PRE, *SRE, *WAI), and the commands used to display messages
on the screen to the local user (CALL_HOST, KEY, MESSAGE).

In the description of each command, only exceptions to the rule
that a command is executed only in the remote state and a query is
executed in both the local and remote states are mentioned.

The following notation is used in the description of the individual
commands :

< > Angular brackets enclose words that are used as placehold-
ers. There are two types of placeholders: (1) the header
path, (2) a data parameter of a command.

:= A colon followed by an equals sign separates a placeholder
from the description of the type and range of values that may
be used in a command instead of the placeholder.

{} Braces enclose a list of choices from which one must be se-
lected.

[] Square brackets enclose optional items.

An ellipsis indicates that the items to the left and to the right
of the ellipsis may be repeated zero or more times.

37

S System Commands

38

As an example, consider the syntax notation for the command to
set the vertical input sensitivity:

<channel>:VOLT_DIV <v_gain>
<channel> := {C1, C2}
<v_gain> = 5.0 mV to 2.5V

The first line shows the formal appearance of the command with
<channel> denoting the placeholder for the header path, and
<v_gain> denoting the placeholder for the data parameter specify-
ing the desired vertical gain value. The second line indicates that
either “C1” or “C2” must be chosen for the header path, and the
third line explains that the actual vertical gain can be set to any
value between 5 mV and 2.5 V.

System Commands 5

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

ALL_STATUS?, ALST?
Query

The ALL_STATUS? query reads and clears the contents of all
status registers: STB, ESR, INR, DDR, CMR, EXR, and URR ex-
cept the MAV bit (bit 6) of the STB register. For an interpretation
of the contents of each register, refer to the appropriate status
register.

The ALL_STATUS? query is useful if a complete overview of the
state of the instrument is required.

ALl_STatus?

ALIL_STatus STB,<value>,ESR,<value>,INR,<value>,
DDR,<value>, CMR<value>,EXR,<value>, URR,<value>
<value> := 0 to 65535

The following instruction reads the contents of all the status regis-
ters.

CMD$="ALST?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message

ALST STB,000000,ESR,000052,INR,000005,DDR,000000,
EXR,000024,CMR,000004,URR,000000

*CLS, CMR?, DDR?, *ESR?, EXR?, *STB?, URR?

39

5 System Commands

ACQUISITION ARM_ACQUISITION, ARM
Command
DESCRIPTION The ARM_ACQUISITION command enables the signal acquisi-
tion process by changing the acquisition state from “triggered” to
“ready”.
COMMAND SYNTAX ARM_acquisition
EXAMPLE The following command enables signal acquisition.

CMDS$ = "ARM”: CALL IBWRT(SCOPE%,CMD$)

RELATED COMMANDS STOP, *TRG, TRIG_MODE, WAIT

40

System Commands S

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX
Response format

EXAMPLE (GPIB)

¥ 9424 only

ATTENUATION, ATTN

Command/Query

The ATTENUATION command selects the vertical attenuation
factor of the probe. Values of 1, 10, 100, 1000 or 10000 may be
specified.

The ATTENUATION? query returns the attenuation factor of the
specified channel.

<channel>:ATTeNuation <attenuation>

<channel> := {C1, C2, C3%, C4}}
<attenuation>:= {1, 10, 100, 1000, 10000}

<channel>: ATTeNuation?
<channel>: ATTeNuation <attenuation>

The following command sets the attenuation factor of channel 1 to
100.

CMD$="C1:ATTN 100”: CALL IBWRT(SCOPE%,CMDS$)

41

5 System Commands

MISCELLANEOUS

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX
Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

42

AUTO_CALIBRATE, ACAL

Command/Query

The AUTO_CALIBRATE command is used to enable or disable
automatic calibration of the instrument. At power-up, auto—cali-
bration is turned ON, i.e. all input channels are periodically
calibrated for the current gain, bandwidth and time-base settings.

The automatic calibration may be disabled by issuing the com-
mand ACAL OFF. Whenever it is convenient, a *CAL? query
may be issued to fully calibrate the oscilloscope. When the oscillo-
scope is returned to local control, the periodic calibrations will be
resumed.

The response to the AUTO_CALIBRATE? query indicates
whether auto—calibration is enabled.

Auto_CALibrate <state>
<state> := {ON, OFF}

Auto_CALibrate?
Auto_CALibrate <state>

The following instruction disables auto-calibration.
CMD$="ACAL OFF”: CALL IBWRT(SCOPE%,CMD$)

*CAL?

System CoMmands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

AUTO_SETUP, ASET

Command

The AUTO_SETUP attempts to display the input signal(s) by ad-
justing the vertical, time-base and trigger parameters. Auto-setup
operates only on the channels whose traces are currently turned
on. The only exception occurs when no traces are turned on, in
which case AUTO_SETUP operates on all channels and turns on
all of the traces.

If signals are detected on several channels, the lowest numbered
channel with a signal determines the selection of the time base and
trigger source.

If only one input channel is turned on, the time base will be ad-
justed for that channel.

Auto_SETup

The following command instructs the oscilloscope to perform an
auto-setup.

CMDS$ = "ASET”: CALL IBWRT(SCOPE%,CMD$)

43

5 System Commands

&

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX
Response Format

EXAMPLE

44

BANDWIDTH_LIMIT, BWL

Command/Query

The BANDWIDTH_LIMIT command enables or disables the
bandwidth limiting low pass filter.

The response to the BANDWIDTH_LIMIT? query indicates if the
bandwidth filter is on or off.

BandWidth_Limit <mode>
<mode> := {ON, OFF}

BandWidth_Limit?
BandWidth_Limit <mode>

The following command turns the bandwidth filter on.

CMDS$ = "BWL ON”: CALL IBWRT(SCOPE%,CMD$)

System Commands 5

MISCELLANEOUS

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

BUZZER, BUZZ

Command

The BUZZER command controls the built-in piezo-electric buzz-
er. This may be useful to attract the attention of a local operator in
an interactive working application. The buzzer may either be acti-
vated for short beeps (about 400 msec long in BEEP mode) or
continuously for a certain time interval selected by the user by
turning the buzzer ON or OFF. A beep request which immediately
follows another beep request will be held off for approximately
200 msec.

Note: This command is always accepted (local and remote).
BUZZer := {BEEP, ON, OFF}

Sending the following code will cause the oscilloscope to sound two
short tones.

CMDS$ = “BUZZ BEEP; BUZZ BEEP";
CALL IBWRT(SCOPE%, CMDS$)

45

5 System Commands

MISCELLANEOUS

DESCRIPTION

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS
% 9424 only, reserved in the 9420/50

46

*CAL?
Query

The *CAL? query performs a complete internal calibration. This
calibration sequence is the same as that which occurs at power—up.
At the end of the calibration, the response indicates how the cali-
bration terminated. When the calibration is finished, the
instrument returns to the state it was in prior to the query.

Hardware failures are identified by a unique binary code in the
returned <status> number (see Table 1). A “0” response indicates
that no failures occurred.

Note: This query is only accepted in remote mode.
*CAL?

*CAL <diagnostics>

<diagnostics> := 0 calibration successful

BIT BIT VALUE DESCRIPTION

0 1 CH1 failure

1 2 CH2 failure

2 4 CH3 failure}

3 8 CH4 failure}

4 16 TDC failure

5 32 Trigger circuit failure
Failures
Table 1

The following instruction forces a self-calibration.

CMD$="*CAL?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RD$): PRINT RD$

Response message (if no failure)
*CAL 0

AUTO_CALIBRATE

System Commands 5

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

CALL_HOST, CHST

Command/Query

The CALL_HOST command allows the user to manually generate
a service request (SRQ). Once the CALL_HOST command has
been received, the message “Call Host” will be displayed next to
the lowest button (10) in the menu field (II). Pressing this button
while in the root menu causes the User Request status Register
(URR) and the URQ bit of the Event Status Register to be set. This
can generate a SRQ in local mode provided that the service re-
quest mechanism has been enabled.

The response to the CALL_HOST? query indicates whether call
host is enabled (on) or disabled (off).

Note: This command can be executed in both local and remote
modes.

Call_HoST <state>
<state> := {ON, OFF}

Call_HoST?

Call_HoST <state>

After executing the following code an SRQ request will be gener-
ated whenever button 10 is pressed. It is assumed that SRQ
servicing has already been enabled.

CMD$="CHST ON”: CALL IBWRT(SCOPE%,CMDS$)

URR?

47

5 System Commands

STATUS

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

48

*CLS

Command

The *CLS command clears all the status data registers.

Note: This command can be executed in both local and remote
modes.

*CLS

The following command causes all the status data registers to be
cleared.

CMD$ = “*CLS”: CALL IBWRT(SCOPE%,CMDS)

ALL_STATUS?, CMR?, DDR?, *ESR?, EXR?, *STB?, URR?

System Commands 5

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

The CMR? query reads and clears the contents of the CoMmand

CMR?
Query

error Register (CMR). The CMR register (Table 2) specifies the
last syntax error type detected by the instrument.

CMR?

CMR <value>

<value>

= 1to 13

The following instruction reads the contents of the CMR register.

CMD$="CMR?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message

CMR 0

ALL_STATUS?, *CLS

1

T oNo o h N

—r — -
N

—
w

Value

Description
Unrecognized command/query header
lllegal header path
lllegal number
lllegal number suffix
Unrecognized keyword
String error
GET embedded in another message
Arbitrary data block expected

Non-digit character in byte count field of arbitrary
data block

EO! detected during definite length data block
transfer

Extra bytes detected during definite length data
block transfer

Command Error Status Register Structure (CMR)

Table 2

49

S System Commands

COMMUNICATION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

EXPLANATION

50

COMM_FORMAT, CFMT

Command/Query

The COMM_FORMAT command selects the format which the
oscilloscope will use to send waveform data. The available options
allow (1) the block format, (2) the data type and (3) the encoding
mode to be modified from the default settings.

Note: This command can be executed in both local and remote
modes.

The COMM_FORMAT? query returns the currently selected
waveform data format.

Comm_ForMaT <block_format>,<data_type>,<encoding>
<block_format> := {DEF9, INDO, OFF}

<data_type> := {BYTE, WORD}

<encoding> := {BIN, HEX}

(GPIB uses both encoding forms, RS-232-C always uses HEX)

Initial settings (i.e. after power on) are:

DEF9, WORD, BIN for GPIB
DEF9, WORD, HEX for RS-232-C

Comm_ForMaT?

Comm_ForMaT <block_format>,<data_type>,<encoding>

The following code redefines the transmission format of waveform
data. The data will be transmitted as a block of indefinite length.
Data will be coded in binary and represented as 8-bit integers.

CMD$="CFMT INDO,BYTE,BIN”
CALL IBWRT(SCOPE%,CMD$)

BLOCK FORMAT

DEF9: Uses the IEEE 488.2 definite length arbitrary block re-
sponse data format. The digit 9 indicates that the byte
count consists of 9 digits. The data block directly follows
the byte count field.

For example, a data block consisting of 3 data bytes
would be sent as:

WF DAT1,#9000000003<DAB><DAB><DAB>
where <DAB> represents an 8-bit binary data byte.

System Commands 5

RELATED COMMANDS

INDO: Uses the IEEE 488.2 indefinite length arbitrary block
response data format.

A <NL"END> (new line with EOI) signifies that block
transmission has ended.

The same data bytes as above would be sent as:
WF DAT1,#0<DAB><DAB><DAB><NL"END>

OFF: Same as INDO. In addition, the data block type identi-

fier and the leading #0 of the indefinite length block will
be suppressed. The data presented above would be sent
as:

WF <DAB><DAB><DAB><NL"END>

Note: The format OFF does not conform to the IEEE 488.2 stan-
dard and is only provided for special applications where the
absolute minimum of data transfer may be important.

DATA TYPE

BYTE: Transmits the waveform data as 8-bit integers (1 byte).

WORD: Transmits the waveform data as 16-bit integers
(2 bytes).

ENCODING

BIN: Binary encoding (GPIB only)

HEX: Hexadecimal encoding (bytes are converted to 2 hexa-
decimal ASCII digits (0, ... 9, A, ... F))

WAVEFORM?

51

5 System Commands

COMMUNICATION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

52

COMM_HEADER, CHDR

Command/Query

The COMM_HEADER command controls the way the oscillo-
scope will format responses to queries. The instrument provides
three response formats: (1) LONG format, i.e. responses start
with the long form of the header word; (2) SHORT format, i.e.
responses start with the short form of the header word; (3) OFF,
i.e. headers are omitted from the response and suffix units in num-
bers are suppressed. Until the user requests otherwise, the SHORT
response format is used.

This command does not affect the interpretation of messages sent
to the oscilloscope. Headers may be sent in their long or short
form regardless of the COMM_HEADER setting.

Querying the vertical sensitivity of Channel 1 may result in one of
the following responses:

COMM_HEADER RESPONSE
LONG CHANNEL_1:VOLT_DIV 200E-3 V
SHORT C1:VDIV 200E-3 V
OFF 200E-3

Note: This command can be executed in both local and remote
modes.

Comm_HeaDeR <mode>
<mode> := {SHORT, LONG, OFF}

Note: The default mode, i.e. the mode just after power on, is
SHORT.

Comm_HeaDeR?

Comm_HeaDeR <mode>

The following code sets the response header format to short.
CMDS$ = "CHDR SHORT"; CALL IBWRT(SCOPE%,CMDS$)

System Commands S

COMMUNICATION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

COMM_HELP, CHLP

Command/Query

The COMM_HELP command enables the help diagnostics utility
to assist remote program debugging. When turned on, this utility
displays all message transactions occurring between the controller
and the oscilloscope on a terminal, printer or similar recording
device connected to the RS-232-C port. Errors detected by the
instrument can be directly viewed.

Note: This command can be executed in both local and remote
modes.

The COMM_HELP? query indicates if the diagnostics utility has
been enabled.

Comm_HeLP <target>
<target> := {RS, OFF}
The initial <target>, (i.e. after power on) is OFF.

Comm_HeLP?

Comm_HeLP <target>

The following code turns on the remote control diagnostics utility.
CMD$="CHLP RS”; CALL IBWRT(SCOPE%,CMDS$)

53

5 System Commands

COMMUNICATION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE

54

COMM_ORDER, CORD

Command/Query

The COMM_ORDER command controls the byte order of wave-
form data transfers. Waveform data may be sent with the most
significant byte (MSB) or the least significant byte (LSB) in the
first position. The default mode is the MSB first.

COMM_ORDER applies equally to the waveform’s descriptor and
time blocks. In the descriptor some values are 16 bits long

“word”), 32 bits long (“long ” or “float”), or 64 bits long (“dou-
ble”). In the time block all values are floating values, i.e. 32 bits
long. When “COMM_ORDER HI” is selected the most significant
byte is sent first. When “COMM_ORDER LO” is specified the
least significant byte is sent first.

The COMM_ORDER? query returns the byte transmission order
currently in use.

Note: This command can be executed in both local and remote
modes.

Comm_ORDer <mode>

<mode> := {HI, LO}

Note: The initial mode, i.e. the mode after power on, is HI.
Comm_ORDer?

Comm_ORDer <mode>

The order of transmission of waveform data depends on the data
type. Table 3 illustrates the different possibilities.

System Commands 5

Type CORD Hi CORD LO

Word <MSB><.SB> <L.SB><MSB>

Long/float <MSB><byte 2><byte 3><.SB> <LSB><byte 3><byte 2><MSB>
Double <MSB><byte 2> ... <byte 7><LSB> <LSB><byte 7> ... <byte 2><MSB>

Waveform Data Transmission Order

Table 3

RELATED COMMANDS WAVEFORM?

55

5 System Commands

COMMUNICATION

DESCRIPTION

56

COMM_RS232, CORS

Command/Query

The command COMM_RS232 sets the parameters of the
RS-232-C port for remote control.

The COMM_RS232? query reports the settings of the parameters.

Note: This command is ONLY valid if the oscilloscope is being
remotely controlled via the RS-232-C port.

The parameters are:

a.
b.

DUPLEX behavior mode.

End Input character. When received by the oscilloscope, this
character will be interpreted as the END-of-a-command
message marker. The commands received will be parsed and
executed.

End Output string. The oscilloscope will add this string at the
end of a response message. When the host computer receives
this string, it knows that the oscilloscope has completed its
response.

Line Length. This parameter defines the maximum number
of characters that will be sent to the host in a single line.
Remaining characters of the response will be output in sepa-
rate additional lines. This parameter is only applicable if a
line separator has been selected.

Line Separator. This parameter is used to select the line split-
ting mechanism and to define the characters used to split the
oscilloscope response messages into many lines. Possible line
separators are: CR, LF, CRLF. A <CR>, a<LF>ora <CR>
followed by a <LF> will be sent to the host computer after
<line_length> characters.

SRQ string. This string is sent each time the oscilloscope
wants to signal an SRQ to the host computer.

Note: Some parameters of this command require ASCII strings as
actual arguments. In order to facilitate the embedding of non-
printable characters into such strings, escape sequences may be

System Commands 5

COMMAND SYNTAX

used. the back~slash character ("\’) is used as an escape charac-
ter. The following escape sequences are recognized:

“Na”: Bell character,

“\b”: Back space character,

“\e”: Escape character,

“\n”; Line feed character,

“Nr”: Carriage return character,
“\t”: Horizontal tab character,

N\ The back-slash character itself

“\Nddd”: ddd represents one to three decimal digit characters giv-
ing the code value of the corresponding ASCII
character. This allows any ASCII code in the range I to
127 to be inserted.

Before using the string, the oscilloscope will replace the escape
sequence by the corresponding ASCII character.

For example, the escape sequences “\r”, “\13” and “\013” are
all replaced by the single ASCII character <Carriage Return>.

Notation

DUPLEX duplex El End input character
EO End output string LL Line length

LS Line separator SRQ SRQ Service request

COmm_RS232 DUPLEX,<duplex>,El,<ei_char>,
EO,’<eo_string>’,LL,<line_length>,LS,<Line_sep>,
SRQ,’<srq_string>’

<duplex> := FULL (only full duplex is currently implemented)
<ei_char> := 1 to 126 (default: 13 = <CR>)

<eo_string> := A non-~empty ASCII string of up to 20 characters.
(default: “\n\r”)

<line_length> := 40 to 1024 (default: 256)
<line_sep> := {OFF, CR, LF, CRLF} (default: OFF)

<srq_string> := An ASCII string which may be empty.
(default: empty string)

57

5 System Commands

QUERY SYNTAX

Response Format

EXAMPLE

58

COmm_RS232?
COmm_RS232 DUPLEX,<duplex>,El,<ei_char>,
EO,"<eo_string>",

LL,<line_length>,LS,<line_sep>,SRQ,”<srq_string>"

After executing the command
COMM_RS232 EL3,EO,”\R\NEND\R\N"

the oscilloscope will assume that it has received a complete mes-
sage each time the <ETX> (decimal value 3) is detected. Response
messages will be terminated by sending the character sequence
“<CR><LF>END<CR><LF>",

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE GPIB)

+ 9424 only

COUPLING, CPL

Command/Query

The COUPLING command selects the coupling mode of the speci-
fied input channel.

The COUPLING? query returns the coupling mode of the speci-
fied channel.

<channel>:CouPLing <coupling>

<channel> := {C1, C2, C3i, C4%})
<coupling> := {A1M, D1IM, D50, GND}

<channel>:CouPLing?
<channel>:CouPLing <coupling>

The following command sets the coupling of Channel 2 to
50 & DC.

CMD$="C2:CPL D50”: CALL IBWRT(SCOPE%,CMD3$)

59

5 System Commands

CURSOR

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

60

CURSOR_MEASURE, CRMS

Command/Query

The CURSOR_MEASURE command specifies the type of cursor
to be displayed.

The CURSOR_MEASURE? query indicates which cursors are
currently displayed. :

Notation

HABS Horizontal absolute HREL Horizontal relative
VABS Vertical absolute VREL Vertical relative
PARAM Parameters OFF Cursors off

Note: The PARAM mode is turned OFF when the XY mode is ON.

CuRsor_MeaSure <mode>
<mode> := {HABS, VABS, HREL, VREL, PARAM, OFF}

CuRsor_MeaSure?

CuRsor_MeaSure <mode>

The following command switches on the vertical relative cursors.
CMD$="CRMS VREL"”: CALL IBWRT(SCOPE%,CMD$)

The following command determines which cursor is currently
turned on.

CMDS$="CRMS?”: CALL IBWRT(SCOPE%,CMD$)
CALL IBRD(SCOPE%,RDS$): PRINT RDS$

Example of response message
CRMS OFF

System Commands 5

CURSOR

DESCRIPTION

I 9424 only

CURSOR_SET, CRST

Command/Query

The CURSOR_SET command allows the user to position any one
of the eight independent cursors at a given screen location. The
positions of the cursors can be modified or queried even if the
required cursor is not currently displayed on the screen.

When setting a cursor position, a trace must be specified, relative
to which the cursor will be positioned.

The CURSOR_SET? query indicates the current position of the
cursor(s). The values returned depend on the grid type selected.

Note 1: When the oscilloscope is in the dual grid mode, traces are
assigned to either the upper grid (EA, MC, FE, C1, C3%) or lower
grid (EB, MD, FF, C2, C4%). The trace specified determines
whether a vertical cursor will be placed relative to the upper or
lower grid.

In quad grid mode} each channel is permanently assigned to its
respective grid with C1 at the top and C4 at the bottom. All other
traces may be re-positioned anywhere on the screen using the ver-
tical position control.

Note 2: If the parameter display is turned on, the parameters of
the specified trace will be shown unless the newly chosen trace is
not displayed or has been acquired in sequence mode (these condi-
tions will produce an environment error, see Table 6, page 82). To
only change the trace without repositioning the cursors, the CUR-
SOR_SET command may be given with no argument, (e.g.
EB:CRST).

Notation

HABS Horizontal absolute

VABS Vertical absolute

HREF Horizontal reference HDIF Horizontal difference
VREF Vertical reference VDIF Vertical difference
PREF Parameter reference PDIF Parameter difference

61

5 System Commands

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

$ 9424 only

62

<trace>:CuRsor_SeT <cursor>,<position>[<cursor>,<position>,
...<cursor>,<position>]

<trace> := {EA, EB, MC, MD, FE, FF, C1, C2, C3}, C4%}

<cursor> := {HABS, VABS, HREF, HDIF, VREF, VDIF,
PREF, PDIF}

<position> := 0 to 10 DIV (horizontal)

-13 to 13 DIV (vertical)

Note 1: The suffix DIV is optional.

Note 2: Parameters are grouped in pairs. The first parameter
specifies the cursor to be modified and the second one indicates its
new value. Parameters may be grouped in any order and may be
restricted to those items to be changed.

<trace>:CuRsor_SeT? [<cursor>,...<cursor>]

<cursor>:= {HABS, VABS, HREF, HDIF, VREF, VDIF, PREF,
PDIF, ALL}

<trace>:CuRsor_SeT <cursor>,<position>[<cursor>,<position>,
...<cursor>,<position>]

If <cursor> is not specified, ALL will be assumed. If the position
of a cursor cannot be determined in a particular situation, its posi-
tion will be indicated as UNDEF.

The following command positions the VREF and VDIF cursors at
+3 DIV and -7 DIV respectively, using Function E as a reference.

CMD3$="FE:CRST VREF,3DIV,VDIF,-7DIV”
CALL IBWRT(SCOPE%,CMDS$)

CURSOR VALUE?, PARAMETER_VALUE?

System Commands 5

CURSOR

DESCRIPTION

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

I 9424 only

CURSOR_VALUE?, CRVA?
Query

The CURSOR_VALUE? query returns the values measured by
the specified cursors for a given trace. (The PARAME-
TER_VALUE? query is used to obtain measured waveform
parameter values.)

Notation
HABS Horizontal absolute HREL Horizontal relative
VABS Vertical absolute VREL Vertical relative

<trace>:CuRsor_VAlue? [<mode>,...<mode>]

<trace> := {EA, EB, MC, MD, FE, FF, C1, C2, C3f, C4%}
<mode> := {HABS, VABS, HREL, VREL, ALL}

<trace>:CuRsor_VAlue? <mode>[,<hor_value>],<ver_value>|,
...,<mode>[,<hor_value>],<ver_value>]

For horizontal cursors, both horizontal as well as vertical values
are given, whereas for vertical cursors only vertical values are
given. .

Note: If <mode> is not specified or equals ALL, all the measured
cursor values for the specified trace are returned. If the value of a
cursor could not be determined in the current environment, the
value UNDEF will be returned.

The following query reads the measured absolute horizontal value
of the cross-hair cursor (HABS) on Channel 2.

CMD$="C2:CRVA? HABS”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
"C2:CVRA HABS,34.2 US,244 MV”

CURSOR_SET

63

5 System Commands

MISCELLANEOUS

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

64

DATE

Command/Query

The DATE command changes the date/time of the oscilloscope’s
internal real time clock.

The DATE? query returns the current date/time setting.

DATE <day>,<month>,<year>,<hour>,<minute>,<second>

<day> := 1 to 31

<month> := {JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC}

<year> := 1987 to 2500

<hour> := 0 to 23

<minute> := 0 to 59

<second> := 0 to 59

Note: It is not always necessary to specify all the DATE parame-
ters. Only the parameters up to and including the parameter to be
changed need to be specified, i.e. to change the “year” setting
specify day, month and year together with the required settings.
The time settings will remain unchanged. To change the “second”
setting all the DATE parameters must be specified with the re-
quired settings.

DATE?

DATE <day>,<month>,<year>,<hour>,<minute>,<second>

This example will change the date to October 1, 88 and the time to
1:21:16 p.m. (13:21:16 in 24 hour notation).

CMDS$="DATE 1,0CT,1988,13,21,16”
CALL IBWRT(SCOPE%,CMDS$)

System Commands 5

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

DDR?
Query

The DDR? query reads and clears the contents of the Device De-
pendent or device specific error Register (DDR). In the case of a
hardware failure, the DDR register specifies the origin of the fail-

ure. Refer to Table 4, page 66, for further details.

DDR?

DDR <value>
<value> := 0 to 65535

The following instruction reads the contents of the DDR register.

CMD$="DDR?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
DDR 0

ALL_STATUS?, *CLS

65

5 System Commands

f 9424 only, reserved in 9420/50

66

Bit

Bit Value

Description

15..14

Reserved

13

8192

time-base hardware
failure is detected

12

4096

a trigger hardware
failure Is detected

1

2048

a Channel 4% hardware
failure Is detected.

10

1024

a Channel 3% hardware
failure is detected.

512

a Channel 2 hardware
failure Is detected

256

a Channel 1 hardware
failure Is detected

Reserved

a Channel 4% overload
condition is detected

a Channel 3% overload
condition is detected1

a Channel 2 overload
condition is detected

a Channel 1 overload
condition is detected

Device Specific Register Structure (DDR)

System Commands 5

FUNCTION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

i 9424 only

DEFINE, DEF

Command/Query

Standard Oscilloscopes

The DEFINE command specifies the mathematical expression to
be evaluated by a function.

Notation

MAXPTS maximum number of points
SWEEPS maximum number of sweeps

EQN equation AVGS average summed
C1 Channel 1 C2 Channel 2
C3 Channel 3% C4 Channel 4%

<function>:DEFine EQN,’<equation>’,MAXPTS,<max_points>,
SWEEPS,<max_sweeps>

<function> := {MC%}, MD%, FE, FF}

<equation> := {<source>, - <source>, <source> + <source>,

<source> - <source>, AVGS (<source>)}

<source> := {C1, C2, C3%, C4%}

<max_points> := 50 to 50000 on 1-2-5 scale

<max_sweeps> := 1 to 1000

Note 1: Parameters are grouped in pairs. The first one names the
variable to be modified and the second one gives the new value to
be assigned. Pairs may be given in any order and may be restricted
to the variables to be changed.

Note 2: The pair SWEEPS,<max_sweeps> applies only when aver-
aging (AVGS) has been chosen. Otherwise it is ignored.

<function>:DEFine?

<function>:DEFine EQN,’<equation>’,MAXPTS,<max_points>
[LSWEEPS,<max_sweeps>]

67

5 System Commands

EXAMPLE (GPIB)

RELATED COMMANDS

¥ 9424 only

68

The following command defines Function E (FE) to compute the
summed average of Channel 1 using 5000 points over 200 sweeps.
CMD$="FE:DEF EQN,’AVGS(C1)’,

MAXPTS, 5000,SWEEPS,200”

CALL IBWRT(SCOPE%,CMDS$)

FUNCTION_RESET, FUNCTION_STATE$, INR?

System Commands 5

FUNCTION

DESCRIPTION

DEFINE, DEF

Command/Query

Oscilloscopes fitted with the WP01 Option

An oscilloscope fitted with the Waveform Processing option

(WPO01) accepts additional forms of the DEFINE command:

ABS
AVGC
AVGS
DERI
EXP
EXP10
EXTR
FLOOR
HRES
INTG
LOG10
LN
ROOF
SQR
SQRT

Processing Notation

Absolute Value
Continuous Average
Summed Average
Derivative

Exponential (power of e)
Exponential (power of 10)
Extrema

Floor (Extrema only)
High Resolution Filter
Integral

Logarithm base 10
Logarithm base e

Roof (Extrema only)
Square

Square Root

Identity or Add

Negation or Subtract
Multiply

Ratio

Reciprocal

69

5 System Commands

Key words

BITS Resolution enhancement, bits (High Resolu-
tion only)

DITHER Dither (Summed Average only)

MAXPTS Maximum number of points

REJECT Reject overflow/underflow (Summed Aver-
age only)

SWEEPS Maximum number of sweeps (Average and
Extrema only)

WEIGHT Weight (Continuous Average only)

COMMAND SYNTAX <function>:DEFine EQN,'<equation>’, MAXPTS,<max_points>,
SWEEPS,<max_sweeps>, DITHER,<off_on>,
REJECT,<off_on>, WEIGHT,<weight>, BITS,<bits>
<function> := {MC}, MD%, FE, FF}

<equation> := AVGS(<source>) Summed Average
<equation> := AVGC(<source>) Continuous Average
<equation> := <paren_source_expr> Identity

<equation> := +<paren_source_expr> Identity

<equation> := —<paren_source_expr> Negation
<equation> := 1/<paren_source_expr> Reciprocal
<equation> := <paren_source_expr> + <source>

Addition

<paren_source_expr> — <source>
Subtraction

<equation> :

<equation> := <paren_source_expr> % <source>

Multiplication
<equation> := <paren_source_expr> / <source>

Ratio
<equation> := EXTR(<source>) Extrema (R+F)

¥ 9424 only

70

System Commands 5

<equation> := FLOOR(EXTR(<source>)) Floor
<equation> := ROOF(EXTR(<source>)) Roof

<equation> := SQR(<source_expr>) Square
<equation> := SQRT(<source_expr>) Square Root
<equation> := LN(<source_expr>) Logarithm base e
<equation> := LOG10(<source_expr>) Logarithm base 10
<equation> := EXP(<source_expr>) Power of e
<equation> := EXP10(<source_expr>) Power of 10
<equation> := INTG(<source_expr>) Integral
<equation> := DERI(<source_expr>) Derivative
<equation> := ABS(<source_expr>) Absolute Value
<equation> := HRES(<source>) High Resolution

<paren_source_
<paren_source_
<source_expr> :
<source_expr> :

<source_expr> :

<source_expr>

expr> := (<source_expr>)

expr> = <source>

<multiplier> * <source> {+, -~} <addend>

1]

<multiplier> * <source>

il

<source> {+, -} <addend>

1= <source>

<multiplier> := 0.001e-33 to 999.999e33

<addend> := - 999.999e33 to 999.999e33

<source> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4i}
<max_points> := 40 to 50000

<max_sweeps> := 1 to 1000000
<off_on> := {OFF, ON}

<weight> := {1,

<bits> := {0.5,

3, 7, 15, 31, 63, 127}
1.0, 1.5, 2.0, 2.5, 3.0}

Note: Space (blank) characters inside equations are optional.

1 9424 only

71

5 System Commands

QUERY SYNTAX

Response format

EXAMPLE (GPIB):

RELATED COMMANDS

I 9424 only

72

<function>:DEFINE?

<function>:DEFine EQN,’<equation>’, MAXPTS,<max_points>,
SWEEPS,<max_sweeps>, DITHER,<off on>,
REJECT,<off_on>, WEIGHT,<weight>, BITS,<bits>

The following command defines Function E to compute the prod-
uct of (Channel 1 multiplied by 2.1 and augmented by 3.3) and
Channel 2, using a maximum of 10000 input points:

CMDS$="FE:DEF EQN,’(2.1*C1+3.3)*C2’, MAXPTS,10000”
CALL IBWRT(SCOPE%,CMDS$)

FUNCTION_RESET, FUNCTION_STATE%, INR?

System Commands 5

FUNCTION

DESCRIPTION

DEFINE, DEF

Command/Query

Oscilloscopes fitted with the WP02 Option

An oscilloscope fitted with the FFT option (WP02) accepts addi-
tional forms of the DEFINE command.

Notation

WINDOW
FFT
REAL
IMAG
MAG
PHASE
PS
PSD
AVGP
RECT
HANN
HAMM
FLTP
BLHA
DCSUP

FFT window function

Fast Fourier Transform (complex result)
Real part of complex result

Imaginary part of complex result
Magnitude of complex result

Phase angle (degrees) of complex result
Power Spectrum

Power Density

Power Average

Rectangular window

von Hann window

Hamming window

Flat Top window

Blackman-Harris window

DC component suppression

COMMAND SYNTAX (FFT) <function>:DEFine EQN,’ <equation>’,
MAXPTS, < max_points >, WINDOW, < window_type >,

% 9424 only

DCSUP, < off_on>

<function> := {MC%}, MD%, FE, FF}
<equation> := FFT(<source_expr>)

<equation> := REAL (FFT(<source_expr>))

<equation> := IMAG(FFT(<source_expr>))

<equation> := MAG(FFT(<source_expr>))

<equation> := PHASE(FFT (<source_expr>))

<equation> := PS(FFT(<source_expr>))

<equation> := PSD(FFT(<source_expr>))

<source_expr> := <multiplier> * <source> {+, -} <addend>
<source_expr> = <multiplier> * <source>

73

5 System Commands

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

COMMAND SYNTAX

(FFT Power Average)

QUERY SYNTAX

Response Format

¥ 9424 only

74

<source_expr> := <source> {+, -} <addend>

<source_expr> = <source>

<multiplier> := 0.001e-33 to 999.999e33

<addend> := -999.999e33 to 999.99%e33

<source> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4}}
<window_type> := {RECT, HANN, HAMM, FLTP, BLHA}
<off_on> := {OFF, ON} : /

Note: The source waveform must be a time domain signal.

<function>:DEFine?

<function>:DEFine EQN,’<equation>’ , MAXPTS,<max_points>,
WINDOW,<window_type>,DCSUP,<off_on>

The following command defines Function E to compute the Power
Spectrum of the FFT of Channel 1. Prior to FFT computation,
Channel 1 is multiplied by 1.018 and 0.055 (units of Channel 1,
i.e. Volts) is added. A maximum of 1000 points will be used for
the input. The window function is Rectangular. The DC compo-
nent of the input is not suppressed.

CMD$="FE:DEF EQN,’PS(FFT(1.018*C1 + 0.055))’,

'"MAXPTS, 1000, WINDOW,RECT,DCSUP,OFF”

CALL IBWRT(SCOPE%,CMD$)

< function > :DEFine EQN,’ < equation >’,
SWEEPS, < max_sweeps >

<equation> := MAG(AVGP(<source>))
<equation> := PS(AVGP(<source>))
<equation> := PSD(AVGP(<source>))
<source> := {MC%}, MD#, FE, FF}

<max_sweeps> := 1 to 50000

Note: The source waveform must be another function defined as a
Fourier transform.

<function>:DEFine?

<function>:DEFine EQN, ’<equation>’,SWEEPS,<max_sweeps>

System Commands 5

EXAMPLE (GPIB)

RELATED COMMANDS

% 9424 only

The following command defines Function F to compute the Power
Spectrum of the Power Average of the FFT being computed by the
Function E, over a maximum of 244 sweeps.

CMD$="FF:DEF EQN,’PS(AVGP(FE))’,SWEEPS,244"
CALL IBWRT(SCOPE%,CMDS$)

FUNCTION_RESET, FUNCTION_STATE%, INR?

75

5 System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

76

DISPLAY, DISP

Command/Query

The DISPLAY command controls the display screen of the oscillo-
scope. When the user is remotely controlling the oscilloscope and
does not need to use the display, it may be useful to switch off the
display via the DISPLAY OFF command. This improves instru-
ment response time since the waveform graphic generation
procedure is suppressed.

The response to the DISPLAY? query indicates the display state of
the oscilloscope.

Note: When the display has been set to OFF, the real time clock
and the message field are updated. However, the waveforms and
associated texts remain unchanged.

DISPlay <state>
<state> := {ON, OFF}

DISPlay?

DISPlay <state>

The following instruction turns off the display generation.
CMD$="DISP OFF”: CALL IBWRT(SCOPE%,CMDS$)

System Commands 5

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

DUAL_ZOOM, DZOM

Command/Query

By setting DUAL_ZOOM ON, the horizontal magnification and
positioning controls apply to all expanded traces simultaneously.
This command is useful if the contents of all expanded traces are
to be examined at the same time.

The DUAL_ZOOM? query indicates whether multiple zoom is en-
abled or not.

Note: This command has the same effect as MULTI_ZOOM.

Dual_ZOoM <mode>
<mode> := {ON, OFF}

Dual_ZOoM?

Dual_ZOoM <mode>

The following example turns dual zoom on.
CMD$="DZOM ON”": CALL IBWRT(SCOPE%,CMD$)

HOR_MAGNIFY, HOR_POSITION, MULTI_ZOOM, ZOOM

77

5 System Commands

STATUS

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

78

*ESE

Command/Query

The *ESE command sets the standard Event Status Enable regis-
ter (ESE). This command allows one or more events in the ESR
register to be reflected in the ESB summary message bit (bit 5) of
the STB register. For an overview of the ESB defined events refer
to the ESR table (Table 5, page 80).

The *ESE? query reads the contents of the ESE register.

Note: This command can be executed in both local and remote
modes.

*ESE <value>

<value> := 0 to 255

*ESE?

*ESE <value>

The following command allows the ESB bit to be set if a user re-
quest (URQ bit 6, i.e. decimal 64) and/or a device dependent

error (DDE bit 3, i.e. decimal 8) occurs. Summing these values
yields the ESE register mask 64+8=72.

CMDS$="*ESE 72”: CALL IBWRT(SCOPE%,CMDS$)

*ESR?

System Commands 5

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

*ESR?
Query

The *ESR? query reads and clears the contents of the Event Status
Register (ESR). The response represents the sum of the binary
values of the register bits 0 to 7. Refer to Table 5, page 80 for an
overview of the ESR register structure.

*ESR?

*ESR <value>
<value> := 0 to 255

The following instruction reads and clears the contents of the ESR
register.

CMD$="*ESR?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
*ESR 0

ALL_STATUS?, *CLS, *ESE

79

5 System Commands

Bit Bit Value | Bit Name Description Note
15..8 0 Reserved by IEEE 488.2

7 128 PON 1 a Power off-to-ON transition has occurred (1)

6 64 URQ 1 a User ReQuest has been issued (2)

5 32 CME 1 a CoMmand parser Error has been found (3)

4 16 EXE 1 an Execution Error has been detected (4)

3 8 DDE 1 a Device Specific Error has occurred (5)

2 4 QYE 1 a QueRy Error has occurred (6)

1 2 RQC 0 The Instrument never requests bus control (7)

0 1 OPC 0 The OPeration Complete bit is not used - (8)

Standard Event Status Register (ESR)
Table 5

Notes:

(1) The Power On (PON) bit Is always turned on (1) when the unit is powered up.

(2) The User Request (URQ) bit Is set true (1) when a soft key is pressed. An associated register URR Identifles
which key was selected. For further detalls refer to the URR? query.

(3) The CoMmand parser Error bit (CME) Is set true (1) whenever a command syntax error is detected. The CME
bit has an associated CoMmand parser Register (CMR) which specifies the error code. Refer to the query
CMR? for further details.

(4) The EXecution Error bit (EXE) is set true (1) when a command cannot be executed due to some device
condition (e.g. oscilloscope in local state) or a semantic error. The EXE bit has an associated Execution Error
Register (EXR) which specifies the error code. Refer to query EXR? for further details.

(5) The Device specific Error (DDE) is set true (1) whenever a hardware failure has occurred at power-up or
execution time such as a channel overload condition, a trigger or a time-base circuit defect. The origin of the
failure may be localized via the DDR? or the seif test *TST? query.

(6) The Query Error bit (QYE) is set true (1) whenever (a) an attempt is being made to read data from the Output
Queue when no output Is either present or pending, (b) data in the Output Queue has been lost, (c) both
output and input buffers are full (deadiock state), (d) an attempt Is made by the controller to read before
having sent an<END>, (e) acommandis received before the response to the previous query was read (output
buffer flushed).

(7) The ReQuest Control bit (RQC) is always false (0) since the oscilloscope has no GPIB controlling capability .

(8) The OPeration Complete bit (OPC) is set true (1) whenever *OPC has been received since commands and
querles are strictly executed in sequential order. The oscilloscope starts processing a command only once the
previous command has been entirely executed.

80

System Commands 5

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

EXR?
Query

The EXR? query reads and clear's the contents of the EXecution
error Register (EXR). The EXR register specifies the type of the
last error detected during execution. Refer to Table 6, page 82 for

further details.

EXR?

EXR <value>

<value> := 21 to 35

The following instruction reads the contents of the EXR register.

CMDS$="*EXR?”: CALL IBWRT(SCOPE%,CMD$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message (if no fault)
EXR 0O

ALL_STATUS?, *CLS

81

5 System Commands

82

Value
21

22

Description

Permission error. The command cannot be executed in
local mode.

Environment error. The Instrument is not configured to
correctly process a command. For instance, the oscilo-
scope cannot be set to RIS at a slow time base.

Option error. The command applies to an option which
has not been installed.

Unresolved parsing error.

Parameter error. Too many parameters specified.
Non-implemented command.

Hex data error. A non-hexadecimal character has been
detected in a hex data block.

Waveform error. The amount of data received does not
correspond to descriptor indicators.

Waveform descriptor error. An invalid waveform de-
scriptor has been detected.

Waveform time error. Invalid RIS or TRIG time data has
been detected.

Waveform data error. Invalid waveform data have been
detected.

Panel setup error. An Invalid panel setup data block has
been detected.

Execution Error Status Register Structure (EXR)

Table 6

System Commands 5

FUNCTION

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

i 9424 only

FUNCTION_RESET, FRST

Command

The FUNCTION_RESET command resets a waveform processing
function. The number of sweeps will be reset to zero and the proc-
ess restarted.

<function>:Function_ReSeT

<function> := {MC}, MD%, FE, FF}

Assuming that Function E (FE) has been defined as the summed
average of Channel 1, the following example will restart the aver-
aging process.

CMDS$="FE:FRST”: CALL IBWRT(SCOPE%,CMD$)

DEFINE, INR?

83

5 System Commands

FUNCTION

DESCRIPTION

COMMAND SYNTAX

I 9424 only

84

FUNCTION_STATE, FSTA %

Command/Query

The FUNCTION_STATE command allows the user to control or
enquire how Functions C, D, E and F are being used. The four
waveform processing functions may assume up to three different
states:

MEM static memory of a waveform (no further automatic pro-
cessing occurs)

ZOOM expansion of another waveform (updated as the source
changes)

FUNC a mathematical function of one or two other waveforms
(updated if one of the sources change)

The two Functions C and D may assume all three states whereas E
and F may assume only the states MEM and FUNC. The setup
information needed to execute expansions or mathematical wave-
form processing is memorized separately by the oscilloscope for
each function. When the state of a function is changed, the last
setup information associated with the new state will be reactivated.

There are three other commands which may cause a state transi-
tion. The command ZOOM applied to Functions C or D will
automatically switch them into zoom state. The commands
STORE (storage from internal waveform) and WAVEFORM
(storage from external waveform) applied to any one of the Func-
tions C, D, E or F will automatically switch them into the memory
state. There is never an automatic transition into the function
state. The command FUNCTION_STATE must be used.

Initially Functions C and D are set to the memory state and Func-
tions E and F are set to the function state.

The query FUNCTION_STATE returns the current state of a
waveform processing function.

<function>:;Function_STAte <state>

<function> := {MC, MD, FE, FF}

<state> := {FUNC, MEM, ZOOM}

System Commands 5

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

<function>:Function_STAte?

<function>:Function_STAte <state>

The following example switches the internal function memory C
into the mathematical waveform processing state thereby re-estab-
lishing the last valid waveform processing definition.

CMD$="MC:FSTA FUNC”: CALL IBWRT(SCOPE%,CMDS$)

DEFINE, STORE, WAVEFORM, ZOOM

85

5 System Commands

DISPLAY

DESCRIPTION -

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

% 9424 only

86

GRID

Command/Query

The GRID command specifies whether the grid should be dis-
played in single, dual or quad} mode.

In single grid mode all the traces are displayed on a single grid.

In dual grid mode the screen is split into two distinct grids to sepa-
rate the traces. In the 9420/50, Channel 1 is always displayed in
the upper grid and Channel 2 in the lower grid. In the 9424, Chan-
nels 1 and 2 are always displayed in the upper grid and Channels 3
and 4 in the lower grid. All other waveforms can be vertically posi-
tioned anywhere.

In quad grid mode} Channel 1 is always displayed in the upper
grid, Channel 2 in the second grid, etc. All other waveforms can
be vertically positioned anywhere.

The GRID? query returns the grid mode currently in use.

GRID <grid>
<grid> := {SINGLE, DUAL, QUAD}}

GRID?

GRID <grid>

The following command sets the screen display to dual grid mode.
CMD$="GRID DUAL”: CALL IBWRT(SCOPE%,CMDS$)

System Commands 5

HARD COPY

DESCRIPTION

COMMAND SYNTAX

HARDCOPY_SETUP, HCSU

Command/Query

The HARDCOPY_SETUP command configures the instrument’s
hard copy driver. The command enables the user to specify the
device type, transmission mode, plot size etc. of the hard-copy
unit connected to the oscilloscope.

The command allows one or more individual settings to be
changed by specifying the appropriate keyword(s) together with
the new value(s). For instance, to select the Graphtec FP5301
plotter with normal speed, the command may be restricted to:

HCSU DEV,FP5301,SPEED,N

Notation

DEV device PORT port

SPEED plot speed DENS print density
PENS plot pens PFEED page feed
PSIZE paper size GRID grid square
LLX lower left X LLY lower left Y
FP5301 Graphtec FP5301 PM8151 Philips PM8151
HP7470A HP 7470A HP7550A HP 7550A
HPQJ HP QuistJet HPTJ HP ThinkJet
HPLJ HP LaserJet EPSON Epson FX80
N Normal NS Non-standard
L Low

HardCopy_SetUp DEV,<device>, PORT,<port>
,SPEED,<plot_speed>,
DENS,<print_density>, PENS,<plot_pens>,
PFEED,<page_feed>, PSIZE,<paper_size>,
GRID,<grid_square>, LLX,<lower_left_X>,
LLY,<lower_left_Y>

Note: Parameters are grouped in pairs. The first one names the
variable to be modified and the second one gives the new value to
be assigned. Pairs may be given in any order and may be restricted
to those variables to be changed.

87

5 System Commands

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

88

<device> := {FP5301, PM8151, HP7470A, HP7550A, HPQJ,
HPTJ, HPLJ, EPSON}

<port> := {GPIB, RS}
<plot_speed> := {N, L} for plotters only

<density> := {SINGLE, DOUBLE, QUADRUPLE,
HIGH_SPEED,HIGH_RESOLUTION,
ONE_TO_ONE, TWO_TO_ONE,CRT}
for printers only

<plot_pens> := 1 to 8
<page_feed> := {ON, OFF}
<paper_size> := {AS, A4, A3, NS}

<grid_square> := 0.0 to 99.9 MM

<lower_left_X>:= -999 to 999 MM p for non-standard
- - paper size only

<lower_left_Y>:= -999 to 999 MM

Note: For these three parameter values the suffix is optional.
The suffix M is assumed.

HardCopy_SetUp?

HardCopy_SetUp DEV,<device>,PORT,<port>,
SPEED,<plot_speed>,DENS,<print_density>,PENS,<plot_pens>,
PFEED,<page_feed>,PSIZE,<paper_size>, GRID,<grid_square>,
LLX,<lower_left X>LLY,<lower_left_Y>

This example selects a HP 7550A plotter to be driven by the GPIB
port.

CMD$="HCSU PORT,GPIB,DEV,HP7550A"
CALL IBWRT(SCOPE%,CMDS$)

HARDCOPY_TRANSMIT, SCREEN_DUMP

System Commands S

HARD COPY

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

HARDCOPY_TRANSMIT, HCTR

Command

The HARDCOPY_TRANSMIT command sends a string of ASCII
characters without modification to the hard-copy unit. This allows
the user to control the hard-copy unit by sending device specific
control character sequences. It also allows the user to place addi-
tional text on a screen dump for documentation purposes. This
command accepts the escape sequence “\ddd” like those de-
scribed under the command COMM_RS232 (see page 56).
Before sending the string to the hard-copy unit the escape se-
quence is converted to the ASCII character code.

HardCopy_TRansmit '<string>’
<string> := Any sequence of ASCII or escaped characters.

The following code sends documentation data to a printer.

CMDS$="HCTR ’Data from Oct.15\r\n’”
CALL IBWRT(SCOPE%,CMDS$)

The following code sends the same documentation data to an
HP7470A plotter using pen 1. The text will be printed at the lower
left corner of the paper.

CMDS$= .
"HCTR ’IN;SP1;PAO0,0;PD;LBData from Oct.15 \03IN;SPO;PA0,0"”
CALL IBWRT(SCOPE%,CMD$)

HARDCOPY_SETUP, SCREEN_DUMP

89

5 System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

t 9424 only

90

HOR_MAGNIFY, HMAG

Command/Query

The HOR_MAGNIFY command horizontally expands the se-
lected expansion trace by a specified factor. Magnification factors
which are not within the range of permissible values will be
rounded to the closest legal value.

If multiple zoom is enabled, the magnification factor for all expan-
sion traces is set to the specified factor. If the specified factor is too
large for any of the expanded traces {(depending on their current
source), it is reduced to an acceptable value and only then applied
to the traces.

The VAB bit (bit 2) in the STB register (Table 8, page 121) is set
if a factor outside the legal range is specified.

The HOR_MAGNIFY query returns the current magnification
factor for the specified expansion function. ;

<exp_trace>:Hor_MAGnify <factor>

<exp_trace> := {EA, EB, MCi, MDj}
<factor> := 1 to 1000

<exp_source>:Hor_MAGnify?
<exp_source>:Hor_MAGnify <factor>

The following example horizontally magnifies Expand B (EB) by a
factor of §.

CMD$="EB:HMAG 5”: CALL IBWRT(SCOPE%,CMD$)

DUAL_ZOOM, ZOOM

System Commands 5

DISPLAY

DESCRIPTION

COMMAND SYNTAX

I 9424 only

HOR_POSITION, HPOS

Command/Query

The HOR_POSITION command horizontally positions the geo-
metric center of the intensified zone on the source trace. Allowed
positions range from division 0 through 10. If the source trace was
acquired in sequence mode, horizontal shifting will only apply to a
single segment at a time.

If the multiple zoom is enabled, the difference between the speci-
fied and the current horizontal position of the specified trace is
applied to all expanded traces. If this would cause the horizontal
position of any expanded trace to go outside the left or right screen
boundaries, the difference of positions is adapted and then applied
to the traces.

If the sources of expanded traces are sequence waveforms, and
the multiple zoom is enabled, the difference between the specified
and the current segment of the specified trace is applied to all ex-
panded traces. If this would cause the segment of any expanded
trace to go outside of the range of the number of segments of
sources, the difference is adapted and then applied to the traces.

The VAB bit (bit 2) in the STB register (Table 8, page 121) isset
if a value outside the legal range is specified.

The HOR_POSITION query returns the position of the geometric
center of the intensified zone on the source trace.

<exp_trace>:Hor_POSition <hor_position>,<segment>

<exp_trace> := {EA, EB, MC}, MDi}}
<hor_position> := 0 to 10 DIV
<segment> := 1 to 200

Note 1: The suffix DIV is optional.

Note 2: The segment number is only relevant for waveforms ac-
quired in sequence mode. The segment number is ignored in single
waveform acquisitions.

91

5 System Commands

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

92

<exp_trace>:Hor_POSition?

<exp_trace>:Hor_POSition <hor_position>, [<segment>]

Note: The segment number is only given for sequence waveforms.

The following example positions the center of the intensified zone
on the trace currently viewed by Expand A (EA) at division 3.

CMD$="EA:HPOS 3”: CALL IBWRT(SCOPE%,CMDS$)

DUAL_ZOOM, ZOOM

System Commands 5

MISCELLANEOUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

*IDN?
Query

The *IDN? query is used for identification purposes. The response
consists of four different fields providing information on the manu-
facturer, the scope model, the serial number and the firmware
revision level.

*IDN?

*IDN LECROY,<model>,<serial number>,<firmware_level>

<model> S5-character model identifier

<serial number> := an 8-digit decimal code (94xxxxxx)
<firmware_level> := 2 digits giving the release level followed by a
period and a 1-digit update level (xx.y)

This example issues an identification request to the scope.

CMD$="*IDN?”": CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
*IDN LECROY,9450_,94501153,02.2

93

5 System Commands

STATUS

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

94

INE

Command/Query

The INE command sets the Internal state change Enable register
(INE). This command allows one or more events in the INR regis-
ter to be reflected in the INB summary message bit (bit 0) of the
STB register. For an overview of the INR defined events refer to
Table 7, page 95.

The INE? query reads the contents of the INE register.

Note: This command can be executed in both local and remote
modes.

INE <value>

<value> := 0 to 65 535

INE?

INE <value>

The following command allows the INB bit to be set whenever a
screen dump has finished (bit 1, i.e. decimal 2) and/or a waveform
has been acquired (bit 0, i.e. decimal 1). Summing these two val-
ues yields the INE mask 2+1=3.

CMD$="INE 3”: CALL IBWRT(SCOPE%,CMD$)

INR?

System Commands 5

STATUS INR?
Query
DESCRIPTION The INR? query reads and clears the contents of the INternal state

change Register (INR). The INR register (Table 7) keeps track of
the completion of various internal operations and state transitions.

QUERY SYNTAX INR?

Response format INR <state>
<state> := 0 to 65535

EXAMPLE (GPIB) The following instruction reads the contents of the INR register.
CMDS$="INR?”: CALL IBWRT(SCOPE%,CMDS$)
Response message: INR 1026

i.e. waveform processing in Function E and a screen dump have
both terminated.

RELATED COMMANDS ALL_STATUS?, *CLS, INE

Bit Bit Value Description

15...12 0 Reserved for future use

11 2048 1 waveform processing has terminated in Function F

10 1024 1 waveform processing has terminated in Function E

9 512 1 waveform processing has terminated in Memory D}
8 256 1 waveform processing has terminated in Memory Ci
7...4 0 Reserved for future use

3 8 1 a time-out has occurred in a data block transfer

2 4 1 areturn to the local state is detected

1 2 1 a screen dump has terminated

0 1 1 a new signal has been acquired

Internal State Register Structure (INR)
Table 7

$ 9424 only, reserved in 9420/50

95

5 System Commands

WAVEFORM TRANSFER

DESCRIPTION

QUERY SYNTAX

Response format

I 9424 only

96

INSPECT?, INSP?
Query

The INSPECT? query allows the user to read parts of an acquired
waveform in intelligible form. The command is based on the expla-
nation of the format of a waveform given by the template (use the
query TEMPLATE? to obtain an up-to-date copy). Each logical
block of a waveform may be inspected by giving its name (e.g.
TRIGTIME as mentioned in the template) enclosed in quotes as
the first (string) parameter.

The special logical block named WAVEDESC may also be in-
spected in more detail. By giving the name of a variable in the
block WAVEDESC enclosed in quotes as the first (string) parame-
ter, it is possible to inspect only the actual value of that variable.

Notation

BYTE: raw data as integers (truncated to 8 m.s.b.”)
WORD: raw data as integers (truncated to 16 m.s.b.*)
FLOAT: normalized data (gain, offset applied) as floating

point numbers (gives measured values in volts or
appropriate units)

* most significant bits

<trace>:INSPect? ’<string>’ [,<data_type>]
<trace> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4%}

<string> := a valid name of a logical block or a valid name
of a variable contained in block WAVEDESC
(see the command TEMPLATE and Section 6).

<data_type> := {BYTE, WORD, FLOAT}

Note: The optional parameter <data_type> applies only for in-
specting the data arrays. It selects the representation of the data.
The default <data type> is FLOAT.

<trace>:INSPect “<string>”

<string> := a string giving name(s) and value(s) of a logical block
or a variable.

System Commands 5

EXAMPLES (GPIB) 1) The following command reads the value of the time base at
which the last waveform in Channel 1 was acquired.

CMD$:=“C1:INSP? "TIMEBASE’”
CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSPS$

Response message
CL:INSP “TIMEBASE: 500 US/DIV”

2) The following command reads the entire contents of the wave-
form descriptor block.

CMDS$ = “C1:INSP? "WAVEDESC"”

RELATED COMMANDS TEMPLATE, WAVEFORM_SETUP

97

S System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

98

INTENSITY, INTS

Command/Query

The INTENSITY command sets the intensity level of the grid or
the trace/text provided the local control of the intensity has been
turned off. Note that normally the screen intensity is still under
manual control when the oscilloscope operates remotely. The local
intensity control has to be turned off (using the command INTS
LOCAL,OFF) before the intensity levels can be modified re-
motely.

The intensity level is expressed as a percentage (PCT). A level of
100 PCT corresponds to the maximum intensity while a level of 0
PCT sets the intensity to its minimum value.

The response to the INTENSITY? query indicates the grid and
trace intensity levels and their control mode.

INTenSity LOCAL,<mode>,GRID,<value>,TRACE,<value>

<mode> := {ON, OFF}
<value> := 0 to 100 PCT

Note 1: Parameters are grouped in pairs. The first one names the
variable to be modified and the second one gives the new value to
be assigned. Pairs may be given in any order and may be restricted
to those variables to be changed.

Note 2: The suffix PCT is optional.

INTenSity?

INTenSity LOCAL,<mode>, TRACE,<value>,GRID,<value>

The following instruction enables remote control of the intensity
and changes the grid intensity level to 75%.

CMDS$="INTS LOCAL,OFF,GRID,75"
CALL IBWRT(SCOPE%,CMDS$)

The following instruction re—enables local control of the intensity.

CMDS$=INTS LOCAL,ON”
CALL IBWRT(SCOPE%,CMD$)

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE

RELATED COMMANDS

INTERLEAVED, ILVD

Command/Query

The INTERLEAVED command enables or disables random inter-
leaved sampling (RIS). RIS is available at time-base settings faster
than or equal to 5 psec/div (9450) or 20 psec/div (9420/24). An
environment error (Table 6, page 82) will be generated if the user
attempts to turn off RIS at time-base settings faster than or equal
to 5 nsec/div (9450) or 20 nsec/div (9420/24), or to turn RIS on
at time-base settings slower than 5 usec/div (9450) or 20 psec/div
(9420/24).

RIS is not available for sequence mode acquisitions and therefore
an attempt to turn it on in that mode will also result in an environ-
ment error.

The response to the INTERLEAVED? query indicates whether
the oscilloscope is in the RIS mode.

InterLeaVeD <mode>

<mode> := {ON, OFF}

InterLeaVeD?

InterLeaVeD <mode>

The following command sets the oscilloscope into RIS mode.

CMDS$ = "ILVD ON”: CALL IBWRT(SCOPE%,CMDS$)

TIME_DIV, TRIG_MODE

9%

5 System Commands

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

100

*IST?
Query

The *IST? (Individual STatus) query reads the current state of the
IEEE 488.1 defined “ist” local message. The “ist” individual
status message is the status bit sent during a parallel poll operation.

*IST?

*IST <value>

<value> := Q or 1

The following command reads the contents of the IST bit:

CMDS$ = “*IST?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
*IST 0

*PRE

System Commands 5

DISPLAY

DESCRIPTION

KEY

Command

The KEY command is used to display a string in the menu field
next to one of the 9 menu buttons. The string may consist of up to
12 characters and may be positioned at 4 different locations:
above (L1), opposite (LC), or below (L2) the menu buttons; or
(LB) between pairs of buttons, ([1,2], [3,4], [5,6] or [7,8]). See
Figure 1.

Note: The button names shown in Figure I are not the same as
those indicated in the front—panel figure at the beginning of the
Operator’s Manual.

Texts assigned to the menu buttons will disappear on the next tran-
sition to local but reappear when the instrument is switched back
into the remote state. The texts are cleared at power up, when the
rear-panel RESET button (64) is pressed or if an empty string is
assigned to a location (e.g. KEY ” ”,L1).

Pressing any one of the menu buttons while in remote mode causes
the User Request status Register (URR) and the URQ bit of the
Event Status Register to be set. This can generate an SRQ provided
that the service request mechanism has been enabled.

Note: This command can be executed in both local and remote
modes.

101

5 System Commands

button 1 O | Foml
§TATUB
button 2 O WY
button 3 O Save
PANEL.
button 4 O Reoall
Apdld
button 5 O mm
button 6 O
Turn on
button 7 O XY D.leplay
button 8 O
buttens) \;m.um T
MAIN MENU and RELATED MENU KEYS
Figure 1
COMMAND SYNTAX KEY <button>,’<string>’,<position>

<button> = 1t0 9
<string> := a 12 character string (any ASCII code)
<position> := {L1, LC, L2, LB}

Note: If the position is omitted, LC will be assumed.
EXAMPLE (GPIB) This example will display the message “Continue” on the upper

line in the menu field of button 1.

CMD$="KEY 1,”"CONTINUE’,L.1”

CALL IBWRT(SCOPE%,CMDS$)

RELATED COMMANDS URR?

102

System Commands 5

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

MESSAGE, MSG

Command/Query

The MESSAGE command displays a string of characters in the
Message Field above the grid. The string may be up to 45 charac-
ters in length. The string is displayed as long as the instrument is in
remote mode and no internal status message is generated. Turning
the oscilloscope back to local mode deletes the message. After the
next transition from local to remote the message will be
redisplayed. The message is cleared at power up, when the RESET
button ((64) in the 9420/50, (71) in the 9424) is pressed or if an
empty string is sent (MSG ”).

The MESSAGE? query allows the user to read the last message
which was sent.

Note: This command can be executed in both local and remote
modes.

MeSsaGe ’<string>’
<string> := a string of max. 45 characters
MeSsaGe?

MeSsaGe "<string>"

The following code causes the message " *Connect Probe 1*” to
appear in the message field.

CMD$="MSG ’'*Connect Probe 1*’”
CALL IBWRT(SCOPE%,CMDS$)

103

5 System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

104

MULTI_ZOOM, MZOM

Command/Query

By setting MULTI_ZOOM ON, the horizontal magnification and
positioning controls apply to all expanded traces simultaneously.
This command is useful if the contents of all expanded traces are
to be examined at the same time.

The MULTI_ZOOM? query indicates whether multiple zoom is
enabled or not.

Note: This command has the same effect as DUAL_ZOOM.

Multi_ZOoM <mode>
<mode> := {ON, OFF}

Multi_ZOoM?
Multi_ZOoM <mode>

The following example turns the multiple zoom on.
CMD$="MZOM ON”": CALL IBWRT(SCOPE%,CMDS$)

HOR_MAGNIFY, HOR_POSITION, DUAL_ZOOM, Z00M

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

% 9424 only

OFFSET, OFST

Command/Query

The OFFSET command allows the vertical offset of the specified
input channel to be adjusted.

The maximum ranges depend on the fixed sensitivity setting as
follows:

Fixed Sensitivity| Offset Range Voltage

iV 4+ 10 times | + 10V
0.5V to 20 mV + 12 times 4+ 6 Vito 4+ 240 mv
10 mV + 24 times 4 240 mV

5 mV + 48 times 4+ 240 mv

If an out—of-range value is entered, the oscilloscope is set to the
closest possible value and the VAB bit (bit 2) in the STB register is
set.

Note: The probe attenuation factor is not taken into account for
adjusting the offset.

The OFFSET? query returns the DC offset value of the specified
channel.

<channel>:OFfSeT <offset>

<channel> := {C1, C2, C3%, C4%}
<offset> := ~10V to 10V {maximum range)

Note: The suffix V is optional.

<channel>:OFfSeT?

<channel>:OFfSeT <offset>

The following command sets the offset of Channel 2 to -3 V.
CMD$="C2:0FST -3V”: CALL IBWRT(SCOPE%,CMD$)

105

5 System Commands

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

RELATED COMMANDS

106

*OPC

Command/Query

The *OPC (OPeration Complete) command sets the OPC bit (bit
0) in the standard Event Status Register (ESR) to true. This com-
mand has no other effect on the operation of the oscilloscope as
the instrument starts parsing a command or query only after it has
completely processed the previous command or query.

The *OPC? query always responds with the ASCII character “1”
as the oscilloscope responds to the query only once the previous
command has been entirely executed.

Note: This command can be executed in both local and remote
modes.

*OPC

*OPC?
*OPC 1

*WAI

System Commands 5

MISCELLANEOUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

*OPT?
Query

The *OPT? query identifies oscilloscope options, i.e. additional
firmware or hardware options. The response consists of a series of
response fields listing all the installed options.

*OPT?

*OPT <option_1>,<option_2>,..,<option_N>
<option_i> := character data

Note: If no option is present, the character 0 will be returned.

This example queries the installed options;

CMD$="*OPT?”: CALL IBWRT(SCOPE%,CMD$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
*OPT 0

If the wavefofm processing options WP01 and WP02 are installed,
the response message is

*OPT WP01,WP02

107

5 System Commands

SAVE/RECALL SETUP

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response syntax

EXAMPLE (GPIB)

RELATED COMMANDS

108

PANEL_SETUP, PNSU

Command/Query

The PANEL_SETUP command complements the *SAV/*RST
commands. The PANEL._SETUP command allows panel setups to
be archived in encoded form on external storage media.

Only setup data read by the PNSU? query may be recalled into the
oscilloscope. A panel setup error (see Table 6, page 82) will be
generated if the setup data block contains invalid data.

Note: The communication parameters (those modified by com-
mands CFMT, CHDR, CHLP, CORD and WFSU) and the enable
registers associated with the status reporting system (SRE, PRE,
ESE, INE) are not saved by this command.

PaNel SetUp <setup>

<setup> := A setup block previously read by PNSU?

- PaNel_SetUp?

PaNel_SetUp <setup>

1. The following instruction saves the instrument’s current panel
setup in the file PANEL.SET.

FILES$ = “PANEL.SET”: CMD$ = “PNSU?”
CALL IBWRT(SCOPE%,CMDS$)
CALL IBRDF(SCOPE%,FILES$)

2. The following command recalls the front-panel setup stored
previously in the file PANEL.SET into the oscilloscope.

CALL IBWRTF(SCOPE%,FILES)

*RCL, *SAV

System Commands 5

CURSOR

DESCRIPTION

QUERY SYNTAX

Response Format

$ 9424 only

PARAMETER_VALUE?, PAVA?
Query

The PARAMETER_VALUE? query returns the current value(s)
of the pulse waveform parameter(s) for the specified trace. Traces
do not need to be displayed or selected to obtain the values meas-
ured by the pulse parameters.

Pulse parameters cannot be evaluated on waveforms composed of
segments acquired in sequence mode. However pulse parameters
may be applied to individual segments if they are singled out using
the expansion function.

Parameter Names

FRST first point LAST last point
PNTS points MIN minimum
MAX maximum MEAN mean

SDEV std deviation RMS root mean sq
DLY delay PER period

WID width RISE risetime

FALL falltime ALL all parameters

Parameter Computation States

OK deemed to be determined without problem
AV averaged over several (up to 100} periods
PT window has been period truncated

v invalid value (insufficient data provided)
NP no pulse waveform

LT less than given value

OF signal partially in overflow

UF signal partially in underflow

OU signal partially in overflow and underflow

See the operator’s manual Figure 19.

<trace>:PArameter_VAlue? [<parameter>, ... <parameter>]

<trace> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4%}
<parameter> := {FRST, LAST, PNTS, MIN, MAX, MEAN,
SDEV, RMS, DLY, PER, WID, RISE, FALL, ALL}

<trace>:PArameter_VAlue <parameter>,<value>,<state>[,...
,<parameter>,<value>,<state>]

109

5 System Commands

EXAMPLE (GPIB)

RELATED COMMANDS

110

<value> := decimal numeric value
<state> := {OK, AV, PT, IV, NP, LT, OF, UF, OU}

Note: If <parameter> is not specified, or equal to ALL, all the
parameters followed by their values and states are returned.

The following query reads the risetime of Expand B (EB).
CMD$="EB:PAVA? RISE”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD (SCOPE%,RD$): PRINT RD$

Response message

”"EB:PAVA RISE,3.6E-9S,0K”

CURSOR_SET

System Commands 5

STATUS

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

*PRE

Command/Query

The *PRE command sets the PaRallel poll Enable register (PRE).
The lowest 8 bits of the Parallel Poll Register (PPR) are composed
of the STB bits. The *PRE command allows the user to specify
which bit(s) of the parallel poll register will affect the 'ist” individ-
ual status bit.

The *PRE? query reads the contents of the PRE register. The re-
sponse is a decimal number which corresponds to the binary sum
of the register bits.

Note: This command can be executed in both local and remote
modes.

PRE <value>

<value> := 0 to 65 535
*PRE?
*PRE <value>

The following command will cause the ’ist’ status bit to become 1
as soon as the MAV bit (bit 4 of STB, i.e. decimal 16) is set. This
yields the PRE value 16.

CMD$="*PRE 16”: CALL IBWRT(SCOPE%,CMDS$)

*IST?

111

5 System Commands

SAVE/RECALL SETUP

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

112

*RCL

Command

The *RCL command sets the state of the instrument using one of
the eight non-volatile panel setups by recalling the complete
front-panel setup of the instrument. Panel setup 0 corresponds to
the default panel setup.

The *RCL command produces the opposite effect of the *SAV
command.

If the desired panel setup is not acceptable, the Execution error
status Register (EXR) is set and the EXE bit of the standard Event
Status Register (ESR) is set.

*RCL <panel_setup>

<panel_setup> := 0 to 7

The following code recalls the instrument setup previously stored
in panel setup 5

CMDS$="*RCL 5”: CALL IBWRT(SCOPE%,CMDS$)

PANEL_SETUP, *SAV, EXR?

System Commands 5

SAVE/RECALL SETUP

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

*RST

command

The *RST command initiates a device reset. The *RST sets all 8
traces to the GND line, recalls the default setup and causes a cali-
bration to be performed.

*RST

This example resets the oscilloscope
CMD$="*RST”: CALL IBWRT(SCOPE%,CMD$)

*CAL?, *RCL

113

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE

114

SAMPLE_CLOCK, SCLK

Command/Query

The SAMPLE_CLOCK command allows the user to control the
use of an external time base. The user sets the number of data
points that will be acquired when the oscilloscope is using the ex-
ternal clock.

Sample_CLocK <state>[,<recordlength>]

<state> := {INT,EXT} <recordlength> := {50, 100, 200, 500,
1000, 2000, 5000,
10000, 20000,
50000}

Note: If <recordlength> is not specified the previous value will not
be modified. (The parameter <recordlength> is initially set to

50000). o

Sample_CLocK?

Sample_CLocK <state>,<recordlength>

The following command sets the oscilloscope to use the external
clock with 1000 data point records.

CMD$ = “SCLK EXT,1000”: CALL IBWRT(SCOPE%,CMD$)

System Commands 5

SAVE/RECALL SETUP

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

*SAV

Command

The *SAV command stores the current state of the instrument in
non-volatile internal memory. The *SAV command stores the
complete front-panel setup of the instrument at the time the com-
mand is issued.

Note: The communication parameters (those modified by com-
mands CFMT, CHDR, CHLP, CORD and WFSU) and the enable
registers associated with the status reporting system (SRE, PRE,
ESE, INE) are not saved by this command.

*SAV <panel_setup>

<panel_setup> := 1 to 7

The following code saves the current instrument setup in panel
setup 5.

CMD$="*SAV 5”: CALL IBWRT(SCOPE%,CMDS$)

PANEL_SETUP, *RCL

115

5 System Commands

HARD COPY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

116

SCREEN_DUMP, SCDP

Command/Query

The SCREEN_DUMP causes the oscilloscope to dump the screen
contents onto the hard copy device. For plotting, this command
will not halt oscilloscope activities since plotting is performed in
parallel with other tasks, unless it is done over the same port as the
remote control. Printing, however, cannot be done in parallel with
other oscilloscope operations.

Screen dumps may be aborted by adding [A] to the screen dump
command, as shown in the command syntax below.

The time/date stamp which appears on the plot corresponds to the
time at which the command was executed.

The SCREEN_DUMP? query indicates whether a screen dump is

currently in progress (ON) or has finished (OFF).

SCreen_DumP [A]

Note: The optional parameter “A” may be used to abort a screen
dump.

SCreen_DumP?

SCreen_DumP <status>
<status> := {ON, OFF}

The following code initiates a screen dump.
CMD$="SCDP”; CALL IBWRT(SCOPE%,CMDS$)

INR?, HARDCOPY_SETUP, HARDCOPY_TRANSMIT

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE

RELATED COMMANDS

SEGMENTS, SEGS

Command/Query

The SEGMENTS command sets the number of segments for se-
quence mode acquisition.

The response to the SEGMENTS? query indicates the number of
segments which is set in the oscilloscope.

SEGmentS <segments>
<segments> := {2, 5, 10, 20, 50, 100, 200}

SEGmentS?

SEGmentS <segments>

The following command sets the segment count to 100.

CMDS$ = "SEGS 100”: CALL IBWRT(SCOPE%,CMDS$)

TRIG_MODE

117

5 System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

118

SELECT, SEL

Command/Query

The SELECT command selects the specified trace for manual dis-
play control. An environment error (Table 6, page 82) is
generated if the specified trace is not displayed.

The SELECT? query returns the selection status of the specified
trace.

<trace>:SELect
<trace> := {EA, EB, MC, MD, FE, FF}

<trace>:SELect?
<trace>:SELect <mode>

<mode> := {ON, OFF}

The following command selects Expand B (EB).
CMD$="EB:SEL”: CALL IBWRT(SCOPE%,CMD$)

TRACE

System Commands 5

STATUS

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

*SRE

Command/Query

The *SRE command sets the Service Request Enable register
(SRE). This command allows the user to specify which summary
message bit(s) in the STB register will generate a service request.
Refer to Table 8, page 121 for an overview of the available sum-
mary messages.

A summary message bit is enabled by writing a 1 into the corre-
sponding bit location. Conversely, writing a 0 into a given bit
location prevents the associated event from generating a service
request (SRQ). Clearing the SRE register disables SRQ interrupts.

The *SRE? query returns a value which when converted to a bi-
nary number represents the bit settings of the SRE register. Note
that bit 6 (MSS) cannot be set and its returned value is always
zero.

Note: This command can be executed in both local and remote
modes.

*SRE <value>

<value> := 0 to 255

*SRE?

*SRE <value>

The following command allows an SRQ to be generated as soon as
the MAV summary bit (bit 4, i.e. decimal 16) and/or the INB
summary bit (bit 0, i.e. decimal 1) in the STB register are set.
Summing these two values yields the SRE mask 16 + 1 = 17.

CMD$="*SRE 17”: CALL IBWRT(SCOPE%,CMDS$)

119

5 System Commands

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

*STB?
Query

The *STB? query reads the contents of the 488.1 defined status
register (STB), and the Master Summary Status (MSS). The re-
sponse represents the values of bits 0 to 5 and 7 of the Status Byte
register and the MSS summary message.

The response to a *STB? query is identical to the response of a
serial poll except that the MSS summary message appears in bit 6
inplace of the RQS message. Refer to Table 8, page 121 for further
details on the status register structure.

*STB?

*STB <value>
<value> := 0 to 255

EXAMPLE (GPIB)

RELATED COMMANDS

120

The following instruction reads the status byte register.

CMD$="*STB?”: CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSPS$): PRINT RSP$

Response message
*STB 0

ALL_STATUS?, *CLS, *PRE, *SRE

System Commands 5

Bit | Value Name Description Note
7 128 Dio7 0 Reserved for future use
6 64 MSS/RQS (1)

: MSS =1 at least 1 bit in STB masked by SRE Is 1 (2)

RQS =1 service is requested
5 32 ESB 1 an ESR enabled event has occurred (3)
4 16 MAV 1 Output queue is not empty (4)
3 8 DIO3 0 Reserved
2 4 VAB 1 a command data value has been adapted (5)
1 2 DIO1 ‘ 0 Reserved
0 1 INB 1 an enabled INternal state change
has occurred. (6)

Status Byte Register (STB)
Table 8

Notes:

(1) The Master Summary Status (MSS) indicates that the instrument requests service while the Service Request
status - when set - spacifies that the oscilloscope issued a service request. Bit position 6 depends on the
polling method: ‘

Bit 6 MSS if a *STB? query Is received

RQS if serial polling is conducted

(2) Example: If SRE = 10 and STB = 10 then MSS = 1. If SRE = 010 and STB = 100 then MSS=0.

(3) The Event Status Bit (ESB) Indicates whether or not one or more of the enabled IEEE 488.2 events have

occurred since the last reading or clearing of the Standard Event Status Register (ESR). ESB is set If an
enabled event becomes true (1).

(4) The Message AVailable bit (MAV) indicates whether or not the Output queue Is empty. The MAV summary bit
is set true (1) whenever a data byte resides in the Output queue.

(5) The Value Adapted Bit (VAB) is set true (1) whenever a data value in a command has been adapted to the
nearest legal value. For instance, the VAB bit would be set if the time base is redefined as 2.5 pusec/div since
the adapted value Is 2 usec/div.

(6) The INternal state Bit (INB) is set true (1) whenever certain enabled internal states are entered. For further
information, refer to the INR? query.

121

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

RELATED COMMANDS

122

STOP

Command

The STOP command immediately stops the acquisition of a signal.
It changes the acquisition state from “ready” to “triggered”, and if
the trigger mode is AUTO or NORM it will change to trigger mode
SINGLE to prevent further acquisition.

STOP

The following command stops the acquisition process.

CMDS$ = "STOP”: CALL IBWRT(SCOPE%,CMD$)

ARM_ACQUISITION, TRIG_MODE, WAIT

System Commands 5

WAVEFORM TRANSFER

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

¥ 9424 only

STORE, STO

Command

The STORE command stores the contents of the specified trace
into one of the internal function memories, Memory C,
Memory D, Function E} or Function Fi.

<memory> STOre <trace>

<memory> := {MC, MD, FE}, FF}}
<trace> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4}}

The following command stores the contents of Expand B (EB) into
Memory D (MD).
CMD$="MD:STO EB”: CALL IBWRT(SCOPE%,CMDS$)

FUNCTION_STATE%

123

5 System Commands

WAVEFORM TRANSFER

DESCRIPTION

QUERY SYNTAX

Response format

RELATED COMMANDS

124

TEMPLATE?, TMPL?
Query

The TEMPLATE? query produces a copy of the template which
formally describes the various logical entities making up a com-
plete waveform. In particular, the template describes in full detail
the variables contained in the descriptor part of a waveform. Refer
to Section 6 for further information.

TeMPLate?

TeMPLate “<template>”

<template> := A variable length string detailing the structure of
a waveform.

INSPECT?

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

TIME_DIV, TDIV

Command/Query

The TIME_DIV. command modifies the time-base setting. The
new time-base setting may be specified with suffixes NS for
nanoseconds, US for microseconds, MS for milliseconds, S for
seconds or KS for kiloseconds. An out-of-range value causes the
VAB bit (bit 2) in the STB register (Table 8, STB) to be set.

The oscilloscope will force random interleaved sampling (RIS) for
time-base settings faster than or equal to 5 nsec/div (9450) or
20 nsec/div (9420/24) and single-shot sampling for time-base set-
tings slower than or equal to 10 psec/div (9450) or 50 psec/div
(9420/24). Within this range the INTERLEAVED command al-
lows the user to choose the required sampling mode.

Sequence mode acquisitions also force single-shot sampling and
are therefore restricted to time-base values slower than or equal to
10 nsec/div (9450) or 50 nsec/div (9420/24). In sequence mode
an environment error (Table 6, page 82) will be generated if the
user attempts to set the time base to a faster value.

The TIME_DIV? query returns the current time-base setting.

Time_DIV <value>

<value> := 1 NS to 5 KS

Note: The suffix S (seconds) is optional.
Time_DIV?

Time_DIV <value>

The following command sets the time base to 500 usec/div.
CMD$="TDIV 500US”: CALL IBWRT(SCOPE%,CMD$)
The following command sets the time base to 2 msec/div.
CMD$="TDIV.002”: CALL IBWRT(SCOPE%,CMD$)

INTERLEAVED, TRIG_DELAY, TRIG_MODE

125

5 System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

I 9424 only

126

TRACE, TRA

Command/Query

The TRACE command enables or disables the display of a trace.
An environment error (Table 6, page 82) is set if an attempt is
made to display more than four waveforms.

The TRACE? query indicates whether the specified trace is dis-
played or not.

<trace>:TRAce <mode>

<trace> := {C1, C2, C3%, C4}, EA, EB, MC, MD, FE, FF}
<mode> := {ON, OFF}

<trace>:TRAce?

<trace>:TRAce <mode>

The following command displays Function E (FE).
CMD$="FE:TRA ON”": CALL IBWRT(SCOPE%,CMDS$)

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

*TRG

Command

The *TRG command executes an ARM command.

Note: The *TRG command is the equivalent of the 488.1 GET
(Group Execute Trigger) message.

*TRG

The following command enables signal acquisition.
CMD$="*TRG": CALL IBWRT(SCOPE%,CMDS$)

ARM_ACQUISITION, STOP, WAIT

127

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

TRIG_COUPLING, TRCP

Command/Query

The TRIG_COUPLING command sets the coupling mode of the
specified trigger source. The trigger slope is automatically changed
to positive when the trigger coupling is set to HFDIV.

Note: HFDIV is indicated as HF on the front panel. See the Oper-
ator’s Manual, Section 5 (9424) or Section 6 (9450/20).

The TRIG_COUPLING? query returns the trigger coupling of the
selected source.

<trig_source>:TRig_CouPling <trig_coupling>
<trig_source> := {C1, C2, EX}%, EX10%, C4}}
<trig_coupling> := {AC, DC, HFREJ, LFREJ, HFDIV}
<trig_source>:TRig_CouPling?

<trig_source>:TRig_CouPling <trig_coupling>

The following command sets the coupling mode of the trigger
source Channel 2 to high frequency reject.

CMD$="C2:TRCP HFREJ”: CALL IBWRT(SCOPE%,CMDS$)

TRIG_SELECT

I standard 9424 only, ¥ 9420/50 only, % 9424 with ext. trigger option

128

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

TRIG_DELAY, TRDL

Command/Query

‘The TRIG_DELAY command sets the time at which the trigger is

to occur with respect to the first acquired data point (displayed at
the left hand edge of the screen).

The command expects positive trigger delays to be expressed as a
percentage of the full horizontal screen (this mode is called pre-
trigger acquisition as data are acquired before the trigger occurs).
Negative trigger delays must be given in seconds (this mode is

- called post-trigger acquisition as the data are acquired after the

trigger has occurred).

If a value outside the range -10 000 div X time/div and 100% is
specified, the trigger time will be set to the nearest limit and the
VAB bit (bit 2) will be set in the STB register.

The response to the TRIG_DELAY? query indicates the trigger
time with respect to the first acquired data point. Positive times are
expressed as a percentage of the full horizontal screen and nega-
tive times in seconds.

TRig_DeLay <value>

<value> := 0.00 PCT to 100.00 PCT (pretrigger)
-20 PS to -50 MAS (post-trigger)

Note: The suffix is optional. For positive numbers the suffix PCT
is assumed. For negative numbers the suffix S is assumed. MAS is
the suffix for Msec (megaseconds), useful only for extremely large
delays at very slow time bases.

TRig_DeLay?
TRig_Delay <value>

The following command sets the trigger delay to - 20 sec (post—
trigger)
CMD$="TRDL -20S”: CALL IBWRT(SCOPE%,CMDS$)

TIME_DIV

129

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX.

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

TRIG_LEVEL, TRLV

Command/Query

The TRIG_LEVEL command adjusts the trigger level of the speci-
fied trigger source. An out-of-range value will be adjusted to the
closest legal value and will cause the VAB bit (bit 2) in the STB
register (Table 8, page 121) to be set.

The range of values is as follows:

4 5 times the total V/div setting — with CHAN 1 or CHAN 2 as
the trigger source

+ 2 V with EXT as trigger source for 9420 and 9450

=4 0.8 V with EXT as trigger source for 9424 with ext. trigger
option

4+ 20 V with EXT/10 as trigger source

The TRIG_LEVEL? query returns the current trigger level.

<trig_source>:TRig_LeVel <trig_level>
<trig_source> := {C1, C2, EXt&, EX10%, C4%}
<trig_level> := =20V to 20V (maximum range)
Note: The suffix V is optional.
<trig_source>:TRig_LeVel?

<trig_source>:TRig_LeVel <trig_level>

The following command adjusts the trigger level of Channel 2 to
-3.4 V.

CMD$="C2:TRLV -3.4V”: CALL IBWRT(SCOPE%,CMD$)

TRIG_SELECT

} standard 9424 only, 1 9420/50 only, & 9424 with ext. trigger option

130

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

TRIG_MODE, TRMD

Command/Query

The TRIG_MODE command specifies the trigger mode. An envi-
ronment error (Table 6, page 82) will be generated when TRMD
SEQNCE is received while the instrument is in the interleaved
sampling (RIS) acquisition mode. With the mode SINGLE, this
command will not arm the trigger. Use the command ARM_AC-
QUISITION to actually start a single acquisition.

The TRIG_MODE? query returns the current trigger mode.

TRig_MoDe <mode>
<mode> := {AUTO, NORM, SEQNCE, SINGLE, WRAP}

TRig_MoDe?
TRig_MoDe <mode>

The following command selects the sequence mode.
CMD$="TRMD SEQNCE”: CALL IBWRT(SCOPE%,CMD$)

ARM_ACQUISITION, STOP, TRIG_SELECT

131

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

132

TRIG_PATTERN, TRPA
(9420/50 and 9424 with ext. trigger option)

Command/Query

The TRIG_PATTERN command defines a trigger pattern. The
command specifies the logic composition of the pattern sources
(Channel 1, Channel 2, External) and the conditions under which
a trigger can occur. Note that this command can be used even if
the complex trigger mode has not been activated.

Notation

L Low

H High

X Don’t Care

PR pattern present AB patiern absent
EN pattern entered EX pattern exited

The TRIG_PATTERN? query returns the current trigger pattern.

TRig_PAttern <C1_state>,<C2_state>,<EX_state>,<trig_condi-
tion>

<C1_state> := {L,H,X}

<C2_state> := {L,H,X}

<EX_state> := {L,H,X}

<trig_condition> := {PR, AB, EN, EX}

TRig_PAttern?

TRig_PAttern <C1_state>,<C2_state>,<EX_state>,<trig_condi-
tion>

The following command configures the logic state of the pattern as
HLX (CH1 = H, CH2 = L, EX = X) and defines the trigger con-
dition as pattern absent (AB).

CMD$="TRPA H,L,X,AB”: CALL IBWRT(SCOPE%,CMD$)

TRIG_SELECT

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

TRIG_PATTERN, TRPA (9424)

Command/Query

The TRIG_PATTERN command defines a trigger pattern. The
command specifies the logic composition of the pattern sources
(Channel 1, Channel 2, and Channel 4) and the conditions under
which a trigger can occur. Note that this command can be used
even if the complex trigger mode has not been activated.

Notation

L Low

H High

X Don't Care

PR pattern present AB pattern absent
EN pattern entered EX pattern exited

The TRIG_PATTERN? query returns the current trigger pattern.

TRig_PAttern <C1_state>,<C2_state>,<C4_state>,<trig_condi-
tion>

<C1_state> := {L,H,X}
<C2_state> := {L,H,X}
<C4_state> := {L,H,X}
<trig_condition> := {PR, AB, EN, EX}

TRig_PAttern?

TRig_PAttern <C1_state>,<C2_state>,<C4_state>,<trig_condi-
tion>

The following command configures the logic state of the pattern as
HLX (CH1 = H, CH2 = L, CH4 = X) and defines the trigger con-
dition as pattern absent (AB).

CMD$="TRPA H,L,X,AB”: CALL IBWRT(SCOPE%,CMDS$)

TRIG_SELECT

133

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

134

TRIG_SELECT, TRSE (9420/50)

Command/Query

The TRIG_SELECT command selects the condition that will trig-
ger the acquisition of waveforms. Depending on the trigger type,
additional parameters have to be specified.

The additional parameters are grouped in pairs. The first one
names the variable to be modified and the second one gives the
new value to be assigned. Pairs may be given in any order and may
be restricted to those variables to be changed.

Note: The state-qualified, time/event qualified and pattern trigger
types use the trigger pattern defined by the command TRIG-
GER_PATTERN.

The TRIG_SELECT? query returns the current trigger condition.

Trigger Notation

STD Standard SNG Single source
PA Pattern SQ State qualified
TEQ Time event qualified Tl Time

PL Pulse larger IL Interval larger
EV Event PS Pulse smalier
IS Interval smaller SR Source

HT Hold type HV Hold value

TV Trigger Notation

FLD Field FLDC Field Count
LINE Line CHAR Characteristics
LPIC Lines per picture ILAC Interlace

SR does not apply to the Pattern trigger.
HT and HV do not apply to the standard trigger.

TRig_SElect <trig_type>,SR,<source>,HT,<hold_type>,
HV,<hold_value>
<trig_type> := {STD, SNG, SQ, TEQ, PA}
<source> := {C1, C2, LINE, EX, EX10}
<hold_type> := (TI, EV, PS, PL, IS, IL}
<hold_value> := 25NS to 20S for TI
1 to 10° for EV

System Commands 5

COMMAND SYNTAX
TV TRIGGER

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

EXAMPLE: TV

RELATED COMMANDS

@ for CUSTS0 and CUST60 only,

2.5NS to 20S for PS and PL*
10NS to 20S for IS*
25NS to 20S for IL*

* these values are only valid for single-source and pattern triggers.
Note: The suffix S (seconds) is optional.

TRig_SElect TV,SR,EX,FLDC,<field_count>,FLD,<field>,

CHAR,<characteristics>, LPIC@:<lIpic>,ILAC®@,<ilace>,
LINE,<line> LINE, <line>

<field_count> := {1, 2, 4, 8}

<field> := 1 to field_count

<characteristics> := { NTSC,PALSEC,CUSTS50%,CUST60%}
<lpic> := 1 to 1500

<ilace> := {1, 2, 4, 8}

<line> := 1 to 1500

Note: The FLD value is interpreted with the current FLDC value.
The LINE value is interpreted with the current FLD and CHAR
values.

TRig_SElect?
TRig_SElect <trig_type>,SR,<source>,HT,<hold_type>,
HV,<hold_value>

TRig_SElect TV,SR,EX,FLDC,<field_count>,FLD,<field>,
CHAR,<characteristic>, LINE,<line>

The following command selects the single-source trigger with
Channel 1 as trigger source. Hold type and hold value are chosen
as “Pulse smaller” than 20 psec

CMD3$="TRSE SNG,SR,C1,HT,PS,HV,20 US”
CALL IBWRT(SCOPE%,CMD$)

CMDS$ = "TRSE TV,SR,EX,FLDC,8,FLD,3,CHAR,
PALSEC,LINE,17”

TRIG_COUPLING, TRIG_LEVEL, TRIG_MODE, TRIG_PAT-
TERN, TRIG_SLOPE

& for oscilloscopes with HDTV hardware option only

135

5 System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

TRIG_SELECT, TRSE (9424)

Command/Query

The TRIG_SELECT command selects the condition that will trig-
ger the acquisition of waveforms. Depending on the trigger type,
additional parameters have to be specified.

The additional parameters are grouped in pairs. The first one
names the variable to be modified and the second one gives the
new value to be assigned. Pairs may be given in any order and may
be restricted to those variables to be changed.

Note: The state—qualified, time/event qualified and pattern trigger
types use the trigger pattern defined by the command TRIG-
GER_PATTERN.

The TRIG_SELECT? query returns the current trigger condition.

Trigger Notation

STD Standard SNG Single source
PA Pattern SQ State qualified
TEQ Time event qualified Tl Time

PL Pulse larger L Interval larger
EV Event PS Pulse smaller
IS Interval smaller SR Source

HT Hold type HV Hold value

TV Trigger Notation

FLD Field FLDC Field Count
LINE Line CHAR Characteristics
LPIC Lines per picture ILAC Interlace

SR does not apply to the Pattern trigger.
HT and HV do not apply to the standard trigger.

TRig_SElect <trig_type>,SR,<source>,HT,<hold_type>,
HV,<hold_value>

<trig_type> := {STD, SNG, SQ, TEQ, PA}
<source> := {C1, C2, LINE, EX%, C4%}}
<hold_type> := {TI, EV, PS, PL, IS, IL}
<hold_value> := 25NS to 208 for TI

1 to 10° for EV

i standard 9424 only, % 9424 with ext. trigger option only

136

System Commands 5

COMMAND SYNTAX

TV TRIGGER

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

EXAMPLE: TV

RELATED COMMANDS

@ for CUSTS50 and CUST60 only,

2.5NS to 20S for PS and PL*
10NS to 20S for IS*
25NS to 20S for IL*

* these values are only valid for single-source and pattern triggers.
Note: The suffix S (seconds) is optional.

TRig_SElect TV,SR,C3,FLDC,<field_count>,FLD,<field>,

CHAR,<characteristics>, LPIC@:<Ipic>,ILAC®@ <ilace>,
LINE,<line>

-<field_count> := {1, 2, 4, 8}

<field> := 1 to field_count

<characteristics> := { NTSC,PALSEC,CUSTS0%,CUST60&}
<lpic> = 1 to 1500

<ilace> := {1, 2, 4, 8}

<line> := 1 to 1500

Note: The FLD value is interpreted with the current FLDC value.
The LINE value is interpreted with the current FLD and CHAR
values.

TRig_SElect?
TRig_SElect <trig_type>,SR,<source>,HT,<hold_type>,
HV,<hold_value>

TRig_SElect TV,SR,C3,FLDC,<field_count>FLD,<field>,
CHAR,<characteristic>, LINE,<line>

The following command selects the single-source trigger with
Channel 1 as trigger source. Hold type and hold value are chosen
as “Pulse smaller” than 20 psec

CMD$="TRSE SNG,SR,C1,HT,PS,HV,20 US”
CALL IBWRT(SCOPE%,CMDS$)

CMD$ = "TRSE TV,SR,C3,FLDC,8,FLD,3,CHAR,
PALSEC,LINE,17”

TRIG_COUPLING, TRIG_LEVEL, TRIG_MODE, TRIG_PAT-
TERN, TRIG_SLOPE

& for oscilloscopes with HDTV hardware option only

137

S System Commands

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

TRIG_SLOPE, TRSL

Command/Query

The TRIG_SLOPE command sets the trigger slope of the specified
trigger source. An environment error (see Table 6, page 82) will
be generated when TRSL NEG is received while the trigger cou-
pling is set to HFDIV (see TRIG_COUPLING).

The TRIG_SLOPE? query returns the trigger slope of the selected
source.

<trig_source>:TRig_SLope <trig_slope>
<trig_source> := {C1, C2, EX}%, EX10%, C4}}
<trig_slope> := {NEG, POS}
<trig_source>:TRig_SLope?

<trig_source>:TRig_SLope <trig_slope>

The following command sets the trigger slope of Channel 2 to
negative. :

CMD$="C2:TRSL NEG”: CALL IBWRT(SCOPE%,CMD$)

TRIG_SELECT

% standard 9424 only, ¥ 9420/50 only, % 9424 with ext. trigger option

138

System Commands 5

MISCELLANEOUS

DESCRIPTION

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

RELATED COMMANDS

*TST?
Query

The *TST? query performs an internal self-test. The response in-
dicates if the self-test detected any errors. The self-test includes
testing the hardware of all channels, the time base and the trigger
circuits.

Hardware failures are identified by a unique binary code in the
returned <status> number (see Table 1, page 46). A “0” response
indicates that no failures occurred.

Note: This query is only accepted in remote mode.

*TST?

*TST <status>
<status>:= 0 self-test successful

This example causes a self-test to be performed.

CMD$="*TST?": CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RD$): PRINT RDS$

Response message (if no failure)
*TST 0

*CAL?

139

5 System Commands

STATUS

DESCRIPTION

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

140

URR?
Query

The URR? query reads and clears the contents of the User Request
status Register (URR). The URR register specifies which button in
the menu field was pressed. Refer to Table 9 for further details.

In the remote mode, the URR register indicates the last button
(2 ... 10) which was pressed. In local mode, the URR register indi-
cates whether the CALL HOST button has been pressed. If no
menu button has been pressed since the last URR? query, the
value 0 is returned. Figure 1, (page NO TAG) shows the button
assignments on the instrument.

URR?

URR <value>
<value> := 0 to 9, 100

The following instruction reads the contents of the URR register.

CMDS$="URR?”": CALL IBWRT(SCOPE%,CMDS$)
CALL IBRD(SCOPE%,RSP$): PRINT RSP$

Response message
URR 0

CALL_HOST, KEY, ALL_STATUS?, *CLS

Value Description

no button has been pressed
button 1 has been pressed.
button 2 has been pressed.
button 3 has been pressed.
button 4 has been pressed.
button § has been pressed.
button 6 has been pressed.
button 7 has been pressed.
button 8 has been pressed.
button 9 has been pressed.
The “Call Host” key (button 10
in root menu) has been pressed.

S OONONRWN—=O

o
o

User Request Status Register Structure (URR)
Table 9

System Commands 5

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

VERT_MAGNIFY, VMAG

Command/Query

The VERT_MAGNIFY command vertically expands the specified
trace. The command is executed even if the trace is not displayed.

The VERT_MAGNIFY? query returns the magnification factor of
the specified trace.

<trace>:Vert_MAGnify <factor>

<trace> := {EA, EB, MC, MD, FE, FF}
<factor> := 0.2 to 5.0 (10.0 for high resolution data)

<trace>:Vert_ MAGnify?

<trace>:Vert_MAGnify <factor>

The following command enlarges the vertical amplitude of Func-

tion E by a factor of 3.45 with respect to its original amplitude.
CMDS$="FE:VMAG 3.45": CALL IBWRT(SCOPE%,CMDS$)

VERT_POSITION

141

5 System Commands

DISPLAY

DESCRIPTION.

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

142

VERT_POSITION, VPOS

Command/Query

The VERT_POSITION command adjusts the vertical position of
the specified trace on the screen. The VERT_POSITION com-
mand does not affect the original offset value obtained at
acquisition time.

The VERT_POSITION? query returns the current vertical posi-
tion of the specified trace.
<trace>:Vert_POSition <display_offset>

<trace> := {EA, EB, MC, MD, FE, FF}
<display_offset> := =56 DIV to 56 DIV

Note: The suffix DIV is optional.

<trace>:Vert_POSition?

<trace>:Vert_POSition <display_offset>

The following command shifts Expand A (EA) upwards by +3 divi-
sions, relative to the position at the time of acquisition.

CMD$="EA:VPOS 3DIV”: CALL IBWRT(SCOPE%,CMDS$)

VERT_MAGNIFY

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

I 9424 only

VOLT_DIV, VDIV

Command/Query

The VOLT_DIV command sets the vertical sensitivity in Volts/div.
Values ranging between 5.0 mV and 2.5 V can be specified. The
VARB bit (bit 2) in the STB register (Table 8, page 121) is set if an
out-of-range value is entered.

Note: The probe attenuation factor is not taken into account for
adjusting vertical sensitivity.

The VOLT_DIV? query returns the vertical sensitivity of the speci-
fied channel.

<channel>:Volt_DIV <v_gain>
<channel> := {C1, C2, C3%, C4%}
<v_gain> = 5.0 mV to 2.5 V
Note: The suffix V is optional.
<channel>:Volt_DIV?

<channel>:Volt_DIV <v_gain>

The following command sets the vertical sensitivity of channel 1 to
50 mV/div.

CMD$="C1:VDIV 50MV”:
CALL IBWRT(SCOPE%,CMDS$)

143

5 System Commands

STATUS

DESCRIPTION

Command syntax

RELATED COMMANDS

144

*WAI

Command

The *WAI (WALt to continue) command, required by the IEEE
488.2 standard, has no effect on the oscilloscope as the oscillo-
scope only starts processing a command when the previous
command has been entirely executed.

Note: This command can be executed in both local and remote
modes.

*WAI

*OPC

System Commands 5

ACQUISITION

DESCRIPTION

COMMAND SYNTAX

EXAMPLE

- WAIT

Command

The WAIT command prevents the instrument from analyzing new
commands until the oscilloscope has completed the current acqui-
sition process.

WAIT

send: "TRMD SINGLE”
loop {send: "ARM; WAIT;C1:PAVA? MAX"
read response

process response

1
s

This example finds the maximum amplitudes of several signals ac-
quired one after another. ARM starts a new data acquisition. The
WAIT command ensures that the maximum is evaluated for the
newly acquired waveform.

"C1:PAVA? MAX?” instructs the instrument to evaluate the maxi-
mum data value in the channel 1 waveform.

145

5 System Commands

WAVEFORM TRANSFER

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

% 9424 only

146

WAVEFORM, WF

Command/Query

A WAVEFORM? query transfers a waveform from the oscillo-
scope to the controller, whereas a WAVEFORM command
transfers a waveform from the controller to the oscilloscope.

The WAVEFORM command stores an external waveform back
into the oscilloscope’s internal memory. A waveform consists of
several distinct entities:

(1) the descriptor (DESC),

(2) the user text (TEXT),

(3) the time (TIME) descriptor,

(4) the data (DAT1) block, and optionally
(5) a second block of data (DAT2).

For further information on the structure of the waveform refer to
Section 6. In the 9424 the WAVEFORM command automatically
sets the corresponding function to the memory state.

Note: Only complete waveforms queried with "WAVEFORM?
ALL” can be restored into the oscilloscope.

The WAVEFORM? query instructs the oscilloscope to transmit a
waveform to the controller. The entities may be queried independ-
ently. If the “ALL” parameter is specified, all 4 or 5 entities are
transmitted in one block in the order enumerated above.

Note: The format of the waveform data depends on the current
settings specified by the last WAVEFORM_SETUP command, the
last COMM_ORDER command and the last COMM_FORMAT
command.

<memory>:WaveForm ALL,<waveform_data_block>
<memory>:= {MC, MD, FE%}, FF}}

<waveform_data_block> := arbitrary data block
<trace>:WaveForm? <block>

<trace>:= {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4j}}
<block>:= {DESC, TEXT, TIME, DAT1, DAT2, ALL}

Note: If no parameter is given ALL will be assumed.

<trace>:WaveForm <block>,<waveform_data_block>

System Commands 5

Note: It may be convenient to disable the response header if the
waveform is to be restored. Refer to command COMM_HEADER
Jor further details.

EXAMPLE (GPIB) 1) The following command reads the block DAT1 from Memory C
and saves it in the file “MEMC.DAT”. The path header “MC:”
is saved together with the data.

FILE$ = “MEMC.DAT”

CMDS$ = “MC:WF? DAT1”
CALL IBWRT(SCOPE%,CMDS$)
CALL IBRDF(SCOPE%,FILE$)

2) In the following example, the entire contents of Channel 1 are
saved in the file “CHAN1.DAT”. The path header “C1:” is
skipped to ensure that the data can later be recalled into the
oscilloscope.

FILES$ = “CHAN1.DAT”:RD$=SPACE$(3)

CMDS$ = "CHDR SHORT; C1:WF?”

CALL IBWRT(SCOPE%,CMDS$)

CALL IBRD(SCOPE%,RD$) Skip first 3 characters “C1:”

CALL IBRDF(SCOPE%,FILES$) Save data in the file
“CHAN1.DAT”

3) The following example illustrates how the waveform data saved
in example 2) can be recalled into Memory C.

FILES$ = “CHAN1.DAT”

CMD$ = MC:TRACE ON”

CALL IBWRT(SCOPE%,CMDS$)
CALL IBWRTF(SCOPE%,FILES$)

The MC:TRACE ON command ensures that the <trace> is set
to “MC”. When the data file is sent to the instrument, it first
sees the header “WF” (the characters “C1:” having been
skipped when reading the file) and assumes the default destina-
tion “MC”,

RELATED COMMANDS INSPECT?, COMM_FORMAT, COMM-ORDER, FUNC-
TION_STATE$, TEMPLATE?, = WAVEFORM_SETUP,
WAVEFORM_TEXT,

1 9424 only

147

5 System Commands

WAVEFORM TRANSFER WAVEFORNI_SETUP, WFSU
: : Command/Query
DESCRIPTION The WAVEFORM_SETUP command specifies the amount of

data in a waveform which will be transmitted to the controller. The
command controls the settings of the following parameters:

a. Sparsing (SP). The sparsing parameter defines the interval
(0..25000) between data points. For example:

SP = 0 reads all data points
SP = 1 reads all data points
SP = 4 reads every 4th data point

b. Number of points (NP). The number of points parameter
indicates how many points should be transmitted. For ex-
ample:

NP = 0 sends all data points

NP = 1 sends 1 data point

NP = 5 sends a maximum of 5 data points

NP = 10 sends a maximum of 10 data points

NP = 50 000 sends a maximum of 50 000 data
points

c. First point (FP). The first point parameter specifies the
address of the first data point to be sent. For waveforms
acquired in sequence mode, this refers to the relative ad-
dress in the given segment. For example:

FP = 0 corresponds to the first data point
FP = 1 corresponds to the second data point
FP = 5000 corresponds to data point 5001

d. Segment number (SN). The segment number parameter (0
to 200) indicates which segment should be sent if the
waveform was acquired in sequence mode. This parameter
is ignored for non-segmented waveforms. For example:

SN = 0 all segments
SN = 1 first segment
SN = 23 segment 23

The WAVEFORM_SETUP? query returns the transfer parame-
ters currently in use.

Notation
SP sparsing NP number of points
FP first point SN segment number

148

System Commands 5

COMMAND SYNTAX WaveForm_SetUp SP,<sparsing>,NP,<number>,FP,<point>,
SN,<segment>
<sparsing> := 0 to 25000 (0 = no sparsing)
<number> := 0 to 50000 (0 = all data points)
<point> := 0 to 50000
<segment> := 0 to 200 (0 = all segments)

Note 1: After power—on, all values are set to 0 (i.e. entire wave-
forms will be transmitted without sparsing).

Note 2: Parameters are grouped in pairs. The first one names the
variable to be modified and the second one gives the new value to
be assigned. Pairs may be given in any order and may be restricted
to those variables to be changed.

QUERY SYNTAX WaveForm_SetUp?
Response format WaveForm_SetUp SP,<sparsing>, NP,<number>,

FP,<point>,SN,<segment>

EXAMPLE (GPIB) The following command specifies that every 3rd data point (SP=3)
starting at address 200 should be transferred.

CMD$="WFSU SP,3,FP,200”
CALL IBWRT(SCOPE%,CMD$)

RELATED COMMANDS INSPECT?, WAVEFORM, TEMPLATE

149

S System Commands

WAVEFORM TRANSFER

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

i 9424 only

150

WAVEFORM_TEXT, WFTX

Command/Query

The WAVEFORM_TEXT commaind is used to document the con-
ditions under which a waveform has been acquired. The text
buffer is limited to 400 characters.

The WAVEFORM_TEXT? query returns the text section of the
specified trace.

<trace>:WaveForm_TeXt ’<text>’

<trace> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4})

<text> := An ASCII message (max. 400 characters long)
<trace>:WaveForm_TeXt?
<trace>:WaveForm_TeXt “<text>”"

The following example shows how to document Function E (FE).

MSGS$ = "’ Averaged pressure signal.
Experiment carried out Oct. 15, 88"

CMD$ = "FE:WFTX “+ MSG$
CALL IBWRT(SCOPE%,CMD$)

INSPECT?, WAVEFORM, TEMPLATE?

System Commands 5

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

$ 9424 only

XY_ASSIGN, XYAS

Command/Query

The XY_ASSIGN command assigns traces to the X and Y axis to
create an X versus Y display.

The XY_ASSIGN? query returns the traces currently assigned to
the XY display. If there is no trace assigned to the X-axis and/or
the Y-axis the value UNDEF will be returned instead of the trace
name.

XY_ASsign <X_source>,<Y_source>
<X_source> := {EA, EB, MC, MD, FE, FF, C1, C2, C3f, C4f}
<Y_source> := {EA, EB, MC, MD, FE, FF, C1, C2, C3%, C4}}

XY_ASsign?

XY_ASsign <X_source>,<Y_source>

<X_source> := {UNDEF, EA, EB, MC, MD, FE, FF, C1, C2,
C3%, C4%}

<Y_source> := {UNDEF, EA, EB, MC, MD, FE, FF, C1, C2,
C3%, C4at}

The following command will assign Channel 1 to X and Channel 2
to Y.

CMDS$="XYAS C1,C2”: CALL IBWRT(SCOPE%,CMDS$)

151

5 System Commands

CURSOR

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

152

XY_CURSOR_ORIGIN, XYCO
Command/Query

- The XY_CURSOR_ORIGIN command sets the position of the ori-

gin for absolute time cursor measurements on the XY display.

Absolute time cursor values may be measured either with respect
to the point (0,0) volts (OFF) or with respect to the center of the
XY grid (ON).

The XY_CURSOR_ORIGIN query returns the current assignment
of the origin for absolute time cursor measurements.

XY_Cursor_Origin <mode>
<mode> := {ON, OFF}

XY_Cursor_Origin?
XY_Cursor_Origin <mode>

The followirig command sets the origin for absolute time cursor
measurements to the center of the XY grid.

CMDS$="XYCO ON”: CALL IBWRT(SCOPE%,CMDS$)

System Commands 5

CURSOR

DESCRIPTION

COMMAND SYNTAX

XY_CURSOR_SET, XYCS

Command/Query

The XY_CURSOR_SET command allows the user to position any
one of the nine independent XY cursors at a given screen location.
The positions of the cursors can be modified or queried even if the
required cursor is not currently displayed or if the XY display
mode is OFF.

The XY_CURSOR_SET? query indicates the current position of
the cursor(s). The values returned are quoted relative to the origi-
nal waveform (time or frequency domain).

Notation

HABS Horizontal absolute

HREF Horizontal reference

HDIF Horizontal difference

XABS Vertical absolute on X axis
XREF Vertical reference on X axis
XDIF Vertical difference on X axis
YABS Vertical absolute on Y axis
YREF Vertical reference on Y axis
YDIF Vertical difference on Y axis

XY_Cursor_Set <cursor>,<position>

[<cursor>,<position><cursor>,<position>]

<cursor> := {HABS, HREF,HDIF, XABS, XREF,XDIF, YABS,
YREF, YDIF}

<position> := 0 to 10 DIV (horizontal)
~ 4 to 4 DIV (vertical)
Note 1: The suffix DIV is optional.

Note 2: Parameters are grouped in pairs. The first one names the
cursor to be modified and the second one indicates its new value.
Pairs may be given in any order and may be restricted to those
items to be changed.

153

S System Commands

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

154

XY_Cursor_Set? [<cursor,...<cursor>] r

<cursor> := {HABS, HREF, HDIF, XABS, XREF, XDIF, YABS,
YREF, YDIF, ALL}

Note: If <cursor> is not specified, ALL will be assumed.

XY_Cursor_Set <cursor>,<position>[<cursor>,<position>...
..., <cursor>,<position>]

The following command positions the XREF and YDIF at +3 DIV
and -2 DIV respectively.

CMDS$="XYCS XREF,3DIV,YDIF,-2DIV”
CALL IBWRT(SCOPE%,CMDS$)

System Commands 5

CURSOR

DESCRIPTION

Parameter Names

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

XY_CURSOR_VALUE, XYCV

Command/Query

The XY_CURSOR_VALUE? query returns the current values of
the X versus Y trace parameters. The X versus Y trace does not
need to be displayed to obtain these parameters, but valid sources
must be assigned to the X and Y axes.

<cursor type>_X X

<cursor type>_Y Y

<cursor type>_RATIO AY/AX
<cursor type>_PROD AY * AX

<cursor type> ANGLE arc tan(AY/AX)

<cursor type>_RADIUS sqrt(AX*AX + AY*AY)
<cursor_type> := [HABS, HREL, VABS, VREL]

XY_Cursor_Value? [<parameter>,...<parameter>]

<parameter> := {HABS_X, HABS_Y, HABS_RATIO,
HABS_PROD, HABS_ANGLE, HABS_RADIUS, HREL_X,
HREL_Y, HREL_RATIO, HREL_PROD, HREL_ANGLE,
HREL_RADIUS, VABS_X, VABS_Y, VABS_RATIO,
VABS_PROD, VABS_ANGLE, VABS_RADIUS, VREL_X,
VREL_Y, VREL_RATIO, VREL_PROD, VREL_ANGLE,
VREL_RADIUS, ALL}

Note: If <parameter> is not specified or equals ALL, all the mea-
sured cursor values are returned. If the value of a cursor could not
be determined in the current environment, the value UNDEF will
be returned.

XY_Cursor_Value <parameter>,<value>
[....<parameter>,<value>]
<value> := decimal value or UNDEF

The following query reads the ratio of the absolute horizontal cur-
sor, the angle of the relative horizontal cursor and the product of
the absolute vertical cursor.

CMDS$="XYCV?HABS_RATIO,HREL_ANGLE,VABS_PROD
CALL IBWRT(SCOPE%,CMDSS$)

155

5 System Commands

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response Format

EXAMPLE (GPIB)

156

XY_DISPLAY, XYDS

Command/Query

The XY_DISPLAY command enables or disables the XY display
mode.

The XY_DISPLAY? query returns the current mode of the XY
display.

XY_DiSplay <mode>
<mode> := {ON, OFF}

XY_DiSplay?
XY_DiSplay <mode>

The followihg command turns the XY display ON.
CMDS$="XYDS ON”: CALL IBWRT(SCOPE%,CMDS$)

System Commands S

DISPLAY

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX

Response format

EXAMPLE (GPIB)

RELATED COMMANDS

+ 9424 only

Z00M

Command/Query

The ZOOM command allows the user to select which trace is to be
expanded by one of the expansion functions.

The response to the ZOOM? query indicates which trace is cur-
rently expanded.

In the 9424 the ZOOM command automatically switches the func-
tion to the expand state

<exp_trace>:ZOOM <trace>

<exp_trace> := {EA, EB, MC%{, MD#%}
<trace> := {MC, MD, FE, FF, Ci, C2, C3}, C4})

<exp_trace>:ZOOM?

<exp_trace>:ZOOM <trace>

The following example selects Memory C (MC) as the source for
Expand B (EB).

CMD$="EB:ZOOM MC”: CALL IBWRT(SCOPE%,CMD$)

DUAL_ZOOM

157

6

WAVEFORM STRUCTURE

INTRODUCTION

LOGICAL DATA BLOCKS
OF A WAVEFORM

This section discusses how to read and write waveforms and under-
stand their contents. Waveforms can be divided into two basic
entities, the basic data array (i.e. the raw data values from the
ADC'’s in the acquisition) and the accompanying descriptive infor-
mation, such as vertical scale, horizontal scale, time of day which
are necessary for a full understanding of the data.

The information in a waveform can be accessed using the IN-
SPECT? command which interprets it in an easily understood
ASCII text form. It can also be more rapidly transferred using the
WAVEFORMY? command or written back into the instrument with
the WAVEFORM command. The oscilloscope contains a data
structure called the template which is a detailed description of how
the waveform’s information is organized.

The template gives a detailed description of the form and contents
of the logical data blocks of a waveform. It is provided as a refer-
ence to be used by you and your programs. A sample template is
given in Appendix B although you are encouraged to use the
TEMPLATE? command to examine the actual template that your
instrument is using. The template may change as the instrument’s
firmware is enhanced. The template will help provide backward
compatibility for the interpretation of waveforms.

Usually, a waveform will contain just a Waveform descriptor block

(1.) and a Data array block (5.). In more complicated cases one
or more of the other blocks will be present. The data blocks are:

1. Waveform descriptor block (WAVEDESC). This block in-
cludes all the information necessary to reconstitute the display
of the waveform from the data. This includes:

e hardware settings at the time of acquisition

¢ the exact time of the event

» the kinds of processing that have been performed
¢ the name and serial number of the instrument

e the encoding format used for the data blocks

¢ miscellaneous constants

2. An optional user-provided text (USERTEXT). The WFTX
command can be used to put a title or description of a wave-
form into this block. The WFTX? query command gives an
alternative way to read it. This text block can hold up to 400
characters. However, you should limit the length of each line to
about 45 characters, otherwise the text will be wrapped onto
the next line after 56 characters.

3. A block of sequence acquisition times (TRIGTIME). This
block is needed for sequence acquisitions to record the exact

159

6 Waveform Structure

INSPECT? COMMAND

160

timing information for each segment. It contains the time of
each trigger relative to the trigger of the first segment, as well as
the time of the first data point of each segment relative to its
trigger.

4. A block of random interleaved sampling times (RISTIME).
This block is needed for RIS acquisitions to record the exact
timing information for each segment.

5. A data array block (SIMPLE or DATA_ARRAY_1). This is
the basic integer data of the waveform. It can be raw or cor-
rected ADC data or the integer result of waveform processing.

6. A second data array block (DATA_ARRAY_2). This second
data array is needed to hold the results of processing functions
such as the Extrema (WP01 option) or Complex FFT (WP02
option). In such cases, the data arrays contain:

Extrema FFT

DATA_ARRAY_1 Roof trace Real part
DATA_ARRAY_2 Floor trace Imaginary part

Note: The TEMPLATE also describes an array named DUAL.
This is simply a way to allow the INSPECT? command to examine
the two data arrays together.

This is the simplest way to examine the contents of a waveform. It
can be used on both the data and descriptive parts. The simplest
form of the command is:

INSPECT? “name”

where the template gives the name of a descriptor item or data
block. The answer is returned as a single string, but may span
many lines. Here is some typical dialogue:

question ~ CI1:INSPECT? “VERTICAL_OFFSET”

response C1:INSP “VERTICAL_OFFSET : 1.5625e-03 "
question C1:INSPECT? “TRIGGER_TIME"

response C1:INSP ”

TRIGGER_TIME : Date=FEB 17, 1989, Time = 4: 4:29.5580

”

The INSPECT? command can also be used to get a readable trans-
lation of the full waveform descriptor block with the command:

INSPECT? “WAVEDESC”

The template dump from your instrument (or from Appendix B)
will give details on the interpretation of each of the parameters.

Waveform Structure 6

INSPECT? “SIMPLE”

C1:INSP ”

4.68749e-03
3.28125e-02
5.78125e-02
8.59375e-02
1.07812e-01
1.32812e-01
1.60938e-01

1.09375e-02
3.59375e-02
6.40625e-02
8.90625e-02
1.14062¢-01
1.39062e-01
1.60938e-01

The INSPECT? command is also used to examine the measured
data values of a waveform. For an acquisition with 42 points we

get:

1.71875e-02 2.03125e-02 2.03125¢-02 2.65625e-02
3.90625e-02 4.53125e-02 5.15625e-02 5.15625e-02
6.71875e~02 6.71875e-02 7.65625e-02 7.96875e-02
9.21875e-02 9.53125e-02 1.04687e-01 1.04687e-01
1.20312e-01 1.20312¢-01 1.26562e-01 1.29688e-01
1.42187e-01 1.51562e¢-01 1.54687e-01 1.57812e-01
1.70312e-01 1.73437e-01 1.70312¢-01 1.76563e-01

These numbers are the fully converted measurements in volts. Of
course, when the data block contains thousands of items the string
will contain many lines.

Depending on the application, you may prefer to have the data in
its raw form as either a BYTE (8 bits) or a WORD (16 bits) for
each data value. In this case you must use the relations given below
in association with the WAVEFORM? command to interpret the
measurement. The comniand might then say:

INSPECT? “SIMPLE”,BYTE

The examination of data values for waveforms with two data arrays
can be done as follows:

INSPECT? “DUAL” to get pairs of data values on a single line

INSPECT? “DATA_ARRAY_1”
to get the values of the first data array

INSPECT? “DATA_ARRAY_2"
to get the values of the second data array

It is also possible to examine just a part of the waveform or a
sparsed form of the waveform. This is controlled with the WAVE-
FORM_SETUP command mentioned later in this section.

The INSPECT? command has only a query form. It cannot be
used to send a waveform back into the oscilloscope. It is also a very
verbose way in which to send the information and is not very fast.
Users who need speed or the ability to send the waveform back to
the instrument should use the WAVEFORM commands.

BASIC users might find it convenient to combine the capabilities
of the inspect facility with the waveform query command in order
to construct files containing a human and BASIC readable version
of the waveform descriptor together with the full waveform in a
format suitable for retransmission to the instrument. This can be

161

6 Waveform Structure

WAVEFORM? COMMAND

Interpreting the
waveform descriptor

162

done for a waveform in a memory location by sending the com-
mand:

MC:INSPECT? “WAVEDESC”;WAVEFORM?

and putting the response directly into a disk file.

The WAVEFORM commands are an efficient way to transfer
waveform data using the block formats defined in the IEEE-488.2
standard. You have the possibility of reading all of the logical
blocks of the waveform with a single query:

C1:WAVEFORM?

This is the preferred form for most applications since it is complete
and the response can be downloaded back into the instrument
using the WAVEFORM command. You can also choose to read
any single block with a query like:

C1:WAVEFORM? DAT1

This can save time and space when you need to read many wave-
forms all with the same acquisition conditions or if you are only
interested in lots of raw integer data. Consult the description of the
WAVEFORM command in Section 5 for the names of the various
blocks.

Please be aware that a waveform query response can easily be a
block containing over 200,000 bytes if it is in binary format and
twice as much if the HEX option is used.

The binary response to a query command of the form:

CL:WAVEFORM? or C1:WAVEFORM? ALL

can be put into a disk file and then dumped to show the following
hexadecimal and ASCII form: (This was done over GPIB with de-
fault settings)

Waveform Structure 6

Byte
offset

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448

Binary contents in hexadecimal

4331
3030
0000
0000
0000
0000
004c
0005
0000
2800
0100
0037
0000
00Obe
0000
0000
0000
0000
0000
0000
dg1s
0000
0000
0004
000f
001la
0025
0031
0039

CA57
3433
0000
0000
0000
0000
4543
alf4
0000
0000
0000
4ccc
0800
4579
0000
0000
0000
0000
0000
0000
4abo
0000
ofoo
0006
0011
001c
0027
0032
000a

4820
3057
004c
0000
0000
5400
524f
b100
0000
0000
0000
cd3a
0031
8eel
0000
0000
0000
0000
0000
0000
0004
0000
003f
0007
0011
001d
0027
0033

414c
4158
4543
0100
0000
0000
5939
0000
0000
0000
0000
cced
2bce
0000
0000
0000
0000
0000
0000
0000
0401
0000
8000
0007
0013
001e
0029
0034

4c2c
4544
524f
0000
0000
0000
3435
0000
0000
2900
0100
00486
77be
0056
0000
0000
0053
0000
0000
0000
0407
0000
003c
0009
0015
001f
002a
0034

2339
4553
595f
0001
0000
0000
305f
0000
0000
0000
0000
fe00
49fe
0000
0000
0000
0000
0000
0000
0000
d200
0c00
8000
000b
0016
0022
002b
0037

3030
4300
315f
5a00
0000
0000
0000
0000
2a00
0000
0100
00c?7
783b
0000
0000
0000
0000
0000
0000
0040
0000
003f
2000
000c¢c
00186
0022
0o02d
0038

3030
0000
3100
0000
0000
0000
0000
0000
0000
0000
0000
0000
@800
0000
0000
0000
0000
0000
0000
3dse
0000
8000
0002
0ood
0019
0023
002e
0037

ASCII translation
(b is for uninteresting)

C1:WF ALL, #90000
00430WAVEDESCbbb
bbbbbLECROY_1_1b
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb
bLECROY9450_bbbb

It can be seen that the first 10 bytes translate into ASCII and look
like the simple beginning of a query response. This is followed by
the string “#9000000430”. This is the beginning of a binary block
where 9 ASCII integers are used to give the length of the block
(430 bytes). The waveform itself starts immediately after this at
byte number 21 (the first byte is byte 0).

Deciphering the waveform descriptor can be done with the aid of

‘the template (see Appendix B). It states that the first object is a

DESCRIPTOR_NAME which is a string of 16 characters with the
value WAVEDESC and this is what we see. At byte 16 relative to
the beginning of the descriptor (or byte 37 above) we find the next
string, the TEMPLATE_NAME with the value LECROY_1_1.
Several other parameters follow. We can easily recognize the IN-

163

6 Waveform Structure

Interpreting: the
waveform vertical data

164

STRUMENT_NAME at 76 bytes from the descriptor start (or byte
97 above).

In a similar way we learn that a 4 byte long integer giving the length
of the descriptor starts at byte 36 (or byte 57 above):

WAVE_DESCRIPTOR = 15a (hex) = 346

At byte 60 (or byte 81 above) we find another 4 byte integer giving
the length of the data array:

WAVE_ARRAY_1 = 54 (hex) = 84
and at byte 116 (or byte 137 above) the number of data points:
WAVE_ARRAY_COUNT = 2a (hex) = 42

Now we know that the data will start at byte 346 from the begin-
ning of the descriptor (or byte 367 above) and that each of the 42
data points will be represented by two bytes. The waveform has a
total length of 346 + 84 which is the same as the ASCII string told
us at the beginning of the block. The final Oa at byte 451 is the NL
character associated with the GPIB message terminator
<NL><EOI>.

The data can be easily seen starting at byte 367 above. Since the
oscilloscope has an § bit ADC we see those 8 bits followed by a 0
byte for each data point. It should be noted that for many other
kinds of waveform this second byte will not be zero and contains
interesting information. The data is coded in signed form (two’s
complement) with values ranging from -32768 = 8000 (hex) to
32767 = 7fff (hex). If we had chosen to use the BYTE option for
the data format the values would have been signed integers in the
range —128 = 80 (hex) to 127 = 7f (hex).

Now that we know how to decipher the data it would be useful to
convert it to the appropriate measured values. The vertical reading
for each data point depends on the vertical gain and the vertical
offset given in the descriptor. For acquisition waveforms this corre-
sponds to the volts/div and voltage offset selected after conversion
for the data representation being used. The template tells us that
the vertical gain and offset can be found at bytes 156 and 160
respectively of the descriptor and that they are stored as floating
point numbers in the IEEE 32 bit format. An ASCII string giving
the vertical unit is to be found in VERTUNIT, byte 196. The verti-
cal value is given by the relationship:

value = VERTICAL_GAIN * data - VERTICAL_OFFSET

A data value of 0 is normally displayed as a point in the middle of
the grid.

Waveform Structure 6

Calculating the horizontal
position of a data point

In the case of the data shown above we find:

VERTICAL_GAIN = 1.22070314e-05 from the floating
point number 374c cccd at byte 177

1.56250596e-03 from the floating
point number 3acc c¢d00 at byte 181

V = volts from the string 5600 ... at byte
217

VERTICAL_OFFSET

VERTICAL_UNIT

and therefore:

since data[0] 512 from the hexadecimal word 0200 at byte

367

value[0] = 0.00468 V as stated in the inspect command
above

and

since data[l] = 1024 from the hexadecimal word 0400 at byte
369

value[0] = 0.0109 V as stated in the inspect command
above.

If your computer or available software is incapable of understand-
ing the IEEE floating point values you can find a description of this
format in the template (see Appendix B).

The data values in a waveform may not all correspond to measured
points. The parameters, FIRST _VALID_PNT and LAST_VAL-
ID_PNT give the necessary information. The descriptor also
records the SPARSING_FACTOR, the FIRST_POINT, and the
SEGMENT_INDEX to aid interpretation if the options of the
WAVEFORM_SETUP command have been used.

For sequence acquisitions the data values for each segment are
given in their normal order and the segments are read out one
after the other. The important descriptor parameters are the
WAVE_ARRAY_COUNT and the SUBARRAY_COUNT, giving
the total number of points and the number of segments.

For waveforms such as the extrema and the complex FFT there
will be two arrays one after the other for the two arrays of the
result.

Each vertical data value has a corresponding horizontal position,
usually measured in time or in frequency units. The calculation of
this position depends on the type of waveform being examined.
We will treat separately the single sweep, the sequence, and the
interleaved (RIS) waveform. Each data value has a position, i, in

165

6, Waveform: Structure

166

the original waveform with i = 0 corresponding to the first data
point acquired. The descriptor parameter HORUNIT gives a string
with the name of the horizontal unit.

® Single-sweep waveforms

x[i] = HORIZ_INTERVAL * i + HORIZ_OFFSET

For acquisition waveforms this time is from the trigger to the data
point in question. It will be different from acquisition to acquisition
since the HORIZ_OFFSET is measured for each trigger.

In the case of the data shown above this means:

HORIZ_INTERVAL = 2.5000e-09 from the floating point num-
ber 312b cc77 at byte 197

-1.21044098e-08 from the double preci-
sion floating point number bed49 fe78
3be8 0000 at byte 201

seconds from the string 5300 ... at byte
265

HORIZ_OFFSET

HORUNIT = §

which gives

x[0] = =-1.210e-08 §
x[1] = -0.960e-08 S

® Sequence waveforms

Since sequence waveforms are really many independent acquisi-
tions, each segment will have its own horizontal offset. These can
be found in the TRIGTIME array. For the n’th segment

x[i,n] = HORIZ_INTERVAL * i + TRIGGER_OFFSET|[n]

The TRIGTIME array can contain up to 200 segments of timing
information with two 8 byte double precision floating point num-
bers for each segment.

® Interleaved (RIS) waveforms

These waveforms are composed of many acquisitions interleaved
together. The descriptor parameter, SWEEPS_PER_ACQ gives
the number of acquisitions. The i'th point will belong to the m’th
segment where

m = i modulo (SWEEPS_PER_ACQ)

will have a value between 0 and SWEEPS_PER_ACQ - 1.
Then with

j=i-m

x[i] = x[j,m] = HORIZ_INTERVAL * j + RIS_OFFSET|[m]

Waveform Structure 6

WAVEFORM COMMAND

where the RIS_OFFSET’s can be found in the RISTIME array.
There can be up to 100 8 byte double precision floating point num-
bers in this block. The instrument tries to get segments with times
such that

RIS_OFFSET(i] ~ PIXEL_OFFSET + (i - 0.5) * HORIZ_IN
TERVAL
Thus, taking as an example a RIS with SWEEPS_PER_ACQ = 10

HORIZ_INTERVAL = 1 ns and PIXEL_OFFSET = 0.0, we might
find for a particular event that:

RIS_OFFSETI[0] =-0.5 ns RIS_OFFSET[1] = 0.4 ns
RIS_OFFSET[2] = 1.6 ns RIS_OFFSET[3] = 2.6 ns
RIS_OFFSET[4] = 3.4 ns RIS_OFFSET][5] = 4.5 ns
RIS_OFFSET[6] = 5.6 ns RIS_OFFSET[7] = 6.4 ns
RIS_OFFSET[8] = 7.6 ns RIS_OFFSET[9] = 8.5 ns

and therefore:

x[0] = RIS_OFFSET[0] = -0.5ns
x{1] = RIS_OFFSET[i] = 0.4 ns
x[9] = RIS_OFFSET[9] = 8.5 ns
x[10] = 1 ns * 10 + (-0.5) = 9.5 ns
x[11] = 1ns * 10+ 0.4 = 10.4 ns
x[19] = 1 ns * 10 + 8.5 = 18.5ns
x[20} = 1 ns * 20 + (-0.5) = 19.5 ns

Waveforms that have been read in their entirety with the WAVE-
FORM? command can be sent back into the instrument. Since the
descriptor contains all of the necessary information, you do not
have to be careful about any of the communication format param-
eters. The instrument can learn all that it needs to know from the
waveform.

If you want to synthesize waveforms for display or comparison pur-
poses, you are encouraged to read out a waveform of the
appropriate size and then replace the data with the desired values.
This will assure that the descriptor is coherent.

Note: You are only allowed to send back waveforms to memory
traces (MC or MD for 2-channel instruments or MC, MD, FE
and FF for the 9424). This means that you may have to remove or
change the prefix (C1 or CHANNEL_1) in the response to the WF?
query. The examples for the WF command in Section 5 show how
this can be done. ‘

167

6 Waveform Structure

MORE CONTROL OF
WAVEFORM QUERIES

HIGH-SPEED
WAVEFORM TRANSFER

168

There are many different ways for you to use the WAVEFORM?
command which may simplify or speed up your work. Among
them are:

@ Partial readout of waveform

The WAVEFORM_SETUP command allows you to specify a
short part of a waveform for readout. It also lets you select a spars-
ing factor to read only every n’th data point.

@ Byte swapping

The COMM_ORDER command allows you to swap the two bytes
of a 16-bit word. In fact, byte swapping is done for all numbers
represented by more than one byte. This is the case for the des-
criptor, the time blocks, and WORD arrays, thereby simplifying
data interpretation for some computer systems (e.g. INTEL based,
or DEC)

@ Data length, block format, and encoding

The COMM_FORMAT command gives you control over these
parameters. If you do not need the extra precision of the lower
order byte of the standard data value, the BYTE option lets you
save a factor of two on the amount of data to be transmitted or
stored. If your computer is not able to read binary data, the HEX
option allows a response form where the value of each byte is given
by a pair of hexadecimal digits.

@ Data only transfers

The COMM_HEADER OFF mode will allow you to get a response
to WF? DAT1 with the data only (the C1:WF DAT1 will disap-
pear).

If you have also specified COMM_FORMAT OFF,BYTE,BIN,
you will just get a response of data bytes (the #90000nnnnn will
disappear).

@ Formatting for RS-232 users

The COMM_RS232 command can help you by splitting the very
long WF? response into individual lines

In order to achieve the maximum continuous data transfer rates
from the oscilloscope to your instrument you will have to optimize
many factors. The single most important point is to limit the work
done in your computer. This means avoiding having to write the
data to disk, minimizing the per data point computations, minimiz-

Waveform Structure 6

ing the number of calls to the IO system, etc. You can let the
instrument help by reducing the number of points to be transferred
and the number of data bytes per point. The pulse parameter ca-
pability and the processing functions can save you lots of
computing and lots of data transfer time if employed creatively.
Two other very important principles are:

@ Try to overlap waveform acquisition with waveform transfer. The
oscilloscope is capable of transferring an already acquired or pro-
cessed waveform after a new acquisition has been started. This can
also considerably increase the total time that the oscilloscope will
be able to acquire events if it has to wait for triggers (livetime).

@ Minimize the number of waveform transfers by using the se-
quence mode to accumulate many triggers for each transfer. This
is preferable to using the WAVEFORM_SETUP command to re-
duce the number of data points to be transferred. It also reduces
the oscilloscope transfer overhead significantly.

Here is an example of the type of commands to be given:
ARM to acquire the first event or sequence

WAIT;ARM;C1:WF? to wait for the event, start the next acqui-
sition and then transfer the data.

This second line can be repeated by your program as soon as it has
finished reading the waveform.

169

STATUS REGISTERS

OVERVIEW OF STATUS
AND SERVICE REQUEST
REPORTING

An extensive set of status registers allows the user to quickly deter-
mine the oscilloscope’s internal processing status at any time. The
status registers as well as the status reporting system have been
designed to comply with IEEE 488.2 recommendations.

Related functions are grouped together in common status registers.
Some, such as the Status Byte Register (STB) or the Standard
Event Status Register (ESR), are required by the IEEE 488.2 stan-
dard. However, other registers are device specific. They include
the Command Error Register (CMR) or the Execution Error Reg-
ister (EXR). Commands associated with IEEE 488.2 mandatory
status registers are preceded by an asterisk <*>.

Figure 2 shows the organization of the 9420/24/50 status registers.
The central reporting structure is the Status Byte Register (STB).
It consists of 8 bits, three of which are not used.

The Standard Event Status Bit (ESB) and the Internal Status
Change Bit (INB) in the Status Byte Register are summary bits of
the Standard Event Status Register (ESR) and the Internal State
Change Register (INR). The Message Available Bit (MAV) is set
whenever there are data bytes in the output queue. The Value
Adapted Bit (VAB) indicates that a parameter value was adapted
during a previous command interpretation (e.g. if the command
“TDIV 2.5 US” is received, the time base is set to 2 usec/div and
the VAB bit is set).

The Master Summary Status bit (MSS) indicates that the instru-
ment requests service. The MSS bit can only be set if any of the
other bits of STB are enabled with the Service Request Enable
Register (SRE).

All Enable registers (SRE, ESE and INE) are used to generate a
bitwise AND with their associated status registers. The logical OR
of this operation is reported to the STB register. At power—~on, all
Enable registers are zero, inhibiting any reporting to the STB.

The Standard Event Status Register (ESR) mostly summarizes er-
rors, whereas the Internal State Change Register (INR) reports
internal changes in the instrument. Additional details of the errors
reported by ESR can be obtained with the queries “CMR?”,
“DDR?”, “EXR?” and “URR?”.

171

7 Status Registers

Power ON

User request (URR?)

Device specific error
Query error
Request control (unu

L1
HOEDE R

Operation complete

N

Standard Event
Status Register
Read by *ESR?

Internal State

Command error found CMR?)
Execution error detected (EXR?)

(DDR?)

sed)

Function F processing terminated
Function E processing terrminated
Return—to-local detected

Screen dump terminated

tNew signal acquired

Change Register

Read by INR?

N
Ls]

-
o

I
Hlﬂh'OH 2|
Standard Event ; (-——é

Request
Generation

Logical OR

&

o

(@)

®

L

g

-

(7Tl s[4l 3l 2] 1] o]

Status Register
Set by "ESE n
Read by *ESE?

Service

U L2l 1] of

RQS|

[7 MSS ESBIMAV‘ 31\/Asl 1 lINBI V\

Status Byte Register
Read by Serial Poll
Read by *STB?

in a 9424,

Service Request

Logical OR

Enable Register

A BB Ak

Set by *SRE n
Read by *SRE?

|

7DX<] 5| 4] 3] 2] 1]]‘/

sl

used for Function C, D
processing terminated

1O

N

Internal State Change
Enable Register

Set by INE n

Read by INE?

bits 8, 9 are

172

STATUS REGISTER STRUCTURE OF 9420/24/50

Figure 2

Status Registers 7

Example of status reporting

Summary

STATUS BYTE REGISTER
(STB)

The register structure contains one more register (not shown in
Figure 2). It is the Parallel Poll Enable Register (PRE) which acts
exactly like the Service Request Enable Register (SRE), but it sets
the “ist” bit (not shown in Figure 2), used in the Parallel Poll. The
“ist” bit can also be read with the “*IST?” query.

If an erroneous remote command, e.g. “TRIG_MAKE SINGLE”,
is transmitted to the instrument, it rejects the command and sets
the Command Error Register (CMR) to the value 1 (unrecognized
command/query header). The non-zero value of CMR is reported
to bit 5 of the Standard Event Status Register (ESR) which is then
set.

Nothing further happens unless the corresponding bit 5 of the
Standard Event Status Enable Register (ESE) is set (with the com-
mand “*ESE 32”), enabling the fact that bit 5 of ESR is set to be
reported to the summary bit ESB of the Status Byte Register
(STB).

If setting of the ESB summary bit in STB is enabled, again nothing
happens unless further reporting is enabled by setting the corre-
sponding bit in the Service Request Enable Register (with the
command “*SRE 32”). In this case, the generation of a non-zero
value of CMR ripples through to the Master Summary Status bit
(MSS), generating a Service Request (SRQ).

The value of CMR can be read and simultaneously reset to zero at
any time with the command “CMR?”. The occurrence of a com-
mand error can also be detected by analyzing the response to
“*ESR?”. However, if several types of potential errors must be
surveyed, it is usually much more efficient to enable propagation
of the errors of interest into the STB with the enable registers ESE
and INE.

A command error (CMR) sets bit 5 of ESR:
@ if bit 5 of ESE is set, ESB of STB is also set.

e if bit 5 of SRE is set, MSS/RQS of STB is also set and a
Service Request is generated.

The Status Byte Register is the instrument’s central reporting struc-
ture. The STB is composed of 8 single-bit summary messages (of
which 3 are unused) which reflect the current status of the asso-
ciated data structures implemented in the instrument.

Bit 0 is the summary bit INB of the Internal State Change Register.
It is set if any of the bits of the INR are set, provided that they are
enabled by the corresponding bit of the INE register.

173

7 Status Registers

STANDARD EVENT
STATUS REGISTER (ESR)

Example

174

Bit 2 is the Value Adapted Bit, indicating that a parameter value
was adapted during a previous command interpretation.

Bit 4 is the Message Available (MAV) bit, indicating that the in-
terface output queue is not empty.

Bit 5 of STB is the summary bit ESB of the Standard Event Status
Register. It is set if any of the bits of the ESR are set, provided that
they are enabled by the corresponding bit of the ESE register.

Bit 6 of the Status Byte Register (STB) is alternatively called the
Master Summary Status bit (MSS) or the Request for Service bit
(RQS) because the STB can be read in two different ways. The
command “*STB?” reads and clears the STB in the query mode in
which case bit 6 of the STB is the MSS bit, indicating if the instru-
ment has any reason for requesting service. The other way of
reading the STB is the serial poll (see Section 3, page 22, for the
GPIB serial poll procedure). In this case, bit 6 of the STB is the
RQS bit, indicating the instrument has actually activated the SRQ
line on the GPIB. The serial poll only clears the RQS bit. There-
fore, the MSS bit of the STB (and any other bits which caused
MSS to be set) will stay set after a serial poll. The controller must
reset these bits.

The Status Byte Register may be read via the query “*STB?”. The
response represents the binary weighted sum of the register bits.
The register is cleared by “*STB?”, “ALST?”, “*CLS” or after
the instrument has been powered up.

The ESR is a 16-bit register reflecting the occurrence of events.
The register bit assignments have been standardized by
IEEE 488.2. Only the lower 8 bits are currently in use.

The Standard Event Status Register may be read via the query
“*ESR?”. The response is the binary weighted sum of the register
bits. The register is cieared with an “*ESR?” or “ALST?” query, a
“*CLS” command or after power—on.

The response message “*ESR 160” indicates that a command er-
ror occurred and that the ESR is being read the first time after
power-on. The value 160 can be broken down into 128 (bit 7)
plus 32 (bit 5). See Table 5, page 80, for a description of the
conditions corresponding to the bits set.

The “Power ON” bit appears only on the first “*ESR?” query after
power—on because the query clears the register. The type of com-
mand error can be determined by reading the Command Error
Status Register with the query “CMR?”. Note that it is not neces-
sary to read (and simultaneously clear) this register in order to be
able to set the CMR bit in the ESR on the next command error.

Status Registers 7

STANDARD EVENT
STATUS ENABLE
REGISTER (ESE)

Example

SERVICE REQUEST
ENABLE REGISTER (SRE)

PARALLEL POLL
ENABLE REGISTER (PRE)

Example

INTERNAL STATE CHANGE

STATUS REGISTER (INR)

The ESE allows one or more events in the Standard Event Status
Register to be reported to the ESB summary bit in the STB.

The Standard Event Enable Register is modified with the com-
mand “*ESE”. It is cleared with the command “*ESE 0”, or after
power—-on. It may be read with the query “*ESE?”.

“*ESE 4” sets bit 2 (i.e. binary 4) of the standard event enable
register, enabling query errors to be reported.

The Service Request Enable Register specifies which summary
bit(s) in the Status Byte Register will cause a service request. The
Service Request Enable Register consists of 8 bits. Setting a bit in
the register allows the summary bit located at the same bit position
in the Status Byte Register to generate a service request provided
that the associated event becomes true. Bit 6 (MSS) cannot be set
and is always reported as zero in response to the query “*SRE?”.

The Standard Event Enable Register is modified with the com-
mand “*SRE”. It is cleared with the command “*SRE 0”, or after
power-on. It may be read with the query “*SRE?”.

The Parallel Poll Enable Register specifies which summary bit(s) in
the Status Byte Register will set the “ist” individual local message.
This register is quite similar to the Service Request Enable Register
(SRE), but it is used to set the parallel poll “ist” bit rather than
MSS.

The value of the “ist” may also be read without a Parallel Poll via
the query “*IST?”. The response indicates if the “ist” message has
been set or not (values are 1 or 0).

The Parallel Poll Enable Register is modified with the command
“*PRE". It is cleared with the command “*PRE 0”, or after pow-
er-on. It may be read with the query “*PRE?”. (See Section 3,
page 23, for the GPIB parallel poll procedure.)

“*PRE 5” sets bits 2 and 0 (decimal 4 and 1) of the Parallel Poll
Enable Register.

The INR reports the completion of a number of internal opera-
tions. The events tracked by this 16-bit-wide register are listed
with the command “INR?” in Section 5.

175

7 Status Registers

The Internal State Change Status Register may be read via the
query “INR?”. The response is the binary weighted sum of the
register bits. The register is cleared with an “INR?” or “ALST?”
query, a “*CLS” command or after power-on.

INTERNAL STATE CHANGE
ENABLE REGISTER (INE) The INE allows one or more events in the Internal State Change
Status Register to be reported to the INB summary bit in the STB.

The Internal State Change Enable Register is modified with the
command “INE”. It is cleared with the command “INE 0”, or
after power-on. It may be read with the query “INE?”.

COMMAND ERROR STATUS

REGISTER (CMR) The Command Error Status register contains the code of the last
command error detected by the instrument. Command error
codes are listed with the command “CMR?” in Section 5.

The Command Error Status Register may be read via the query
“CMR?”. The response is the error code. The regisier is cleared
with a “CMR?” or “ALST?” query, a “*CLS” command or after
power—on.

DEVICE DEPENDENT

ERROR STATUS

REGISTER (DDR) The DDR indicates the type of hardware errors affecting the in-
strument. Individual bits in this register report specific hardware
failures. They are listed with the command “DDR?” in Section 5.

The Device Dependent Error Status Register may be read via the
query “DDR?”. The response is the binary weighted sum of the
error bits. The register is cleared with a “DDR?” or “ALST?”
query, a “*CLS” command or after power-on.

EXECUTION ERROR

STATUS REGISTER

(EXR) The Execution Error Status Register contains the code of the last
execution error detected by the instrument. Execution error codes
are listed with the command “EXR?” in Section 5.

The Execution Error Status Register may be read via the query
“EXR?”. The response is the error code. The register is cleared
with a “EXR?” or “ALST?” query, a “*CLS” command or after
power-on.

USER REQUEST STATUS

REGISTER (URR) The URR contains the identification code of the last menu button
which was pressed. The codes are listed with the command
“URR?” in Section 5.

176

Status Registers 7

The User Request Status Register may be read via the query
“URR?”. The response is the decimal code associated with the
selected menu button. The register is cleared with a “URR?” or
“ALST?” query, a “*CLS” command or after power—on.

177

APPENDIX A

EXAMPLE 1:

USE OF THE INTERACTIVE

GPIB PROGRAM ’IBIC’

This example assumes the use of an IBM PC, or a compatible comput-
er, equipped with a National Instruments GPIB interface card. It also
assumes that the GPIB-driver is left in the default state so that the
device name “dev4” corresponds to the GPIB address 4 which is as-
sumed to be the address of the oscilloscope. All text entered by the
user is underlined.

ibic<CR>
program announces itself

enter board/device name: dev4<CR>

dev4: jbwrt<CR>
enter string: “tdiv?”<CR>

[0100] (cmpl)
count: 5

dev4: jbrd<CR>
enter byte count: 10<CR>

[0100] (cmpl)

count: 10

54 44 49 56 20 35 30 45 TDIV S50E
2D 39 -9

dev4: jbwrt<CR>

enter string: “¢1:¢cpl?”<CR>
[0100] (cmpl)
count: 7
dev4: jbrd<CR>

enter byte count: 20<CR>
[2100] (end cmpl)
count: 11

43 31 3A 43 50 4C 20 44 C
35 30 0A 5

dev4: g<CR>

for quitting the program

179

Appendix A

EXAMPLE 2:

GPIB PROGRAM FOR
IBM PC (HIGH-LEVEL
FUNCTION CALLS)

180

The following BASICA program allows full interactive control of
the 9420/24/50 using an IBM PC as GPIB controller. It is again
assumed that the controller is equipped with a National Instru-
ments GPIB interface card. All the remote control commands
listed in Section 5 can be used by simply entering the text string of
the command, i.e. “cl:vdiv 50 mv” (without the quotes). The pro-
gram automatically displays the information sent back by the
oscilloscope in response to queries.

In addition, a few utilities have been provided for convenience.
The commands ST and RC enable waveform data to be stored on
or retrieved from disk if proper drive and file names are provided.
The command LC returns the oscilloscope to local mode. Re-
sponses sent back by the oscilloscope are interpreted as character
strings and are thus limited to a maximum of 255 characters.

Note I: It is assumed that the National Instruments GPIB driver
GPIB.COM is in its default state. This means that the interface
board can be referred to by its symbolic name 'GPIB0O’ and that
devices on the GPIB with addresses 1 to 16 can be called by the
symbolic name 'DEVI1’ to 'DEVI6’.

Note 2: Lines 1 — 99 are a copy of the file DECL.BAS supplied by
National Instruments. The first 6 lines are required for the initial-
ization of the GPIB handler. DECL.BAS requires access to the file
BIB.M during the GPIB initialization. BIB.M is one of the files
supplied by National Instruments, and must exist in the directory
currently in use.

Note 3: The first 2 lines of DECL.BAS each contain a string
“XXXXX” which must be replaced by the number of bytes which
determine the maximum workspace for BASICA (computed by
subtracting the size of BIB.M from the currently available space in
BASICA). For example, if the size of BIB.M is 1200 bytes and
when BASICA is loaded it reports “60200 bytes free”, you would
replace “XXXXX” by the value 59000 or less.

Note 4: The default timeout of 10 seconds is modified to 300 msec
during the execution of this program. However, the default value
of the GPIB handler is not changed. Whenever a remote command
is entered by the user, the program sends it to the instrument with
the function call IBWRT. Afterwards, it always executes an IBRD
call, independently of whether or not a response is expected. If a
response is received it is immediately displayed. If there is no re-
sponse, the program waits until time-out and then asks for the
next command.

Appendix A

1-99
100
110
115
120
125
130
140
145
150
155
160
165
170
200
205
210
220
230
240
250
260
270
275
280
300
310
320
400
405
410
420
425
430
500
505
510
515
520
525
530
535
540
545
550
600

<DECL.BAS>

CLS

PRINT "Control of the 9450 via GPIB and IBM PC"

PRINT "

PRINT "Options :EX to exit LC local mode"

PRINT " ST store dataRC recall data"

PRINT ""

LINE INPUT "GPIB-address of oscilloscope (1...16)? :",ADDR$
DEV$ = "DEV" + ADDR$

CALL IBFIND(DEV$, SCOPE%)

IF SCOPE% < 0 THEN GOTO 830

T™™MO0% = 10 “timeout = 300 msec (rather than default 10 sec)
CALL IBTMO(SCOPE%, TMO%)

LOOP% = 1

WHILE LOOP%
LINE INPUT "Enter command (EX --> Exit) : ",CMD$
IF CMD$ = "ex" OR CMD$ = "EX" THEN LOOP% = 0 : GOTO 310
IF CMD$ = "st" OR CMD$ "ST" THEN GOSUB 600 : GOTO 300
IF CMD$ "rc" OR CMD$ "RC" THEN GOSUB 700 : GOTO 300
IF CMD$ = "lc'" OR CMD$ = "LC" THEN GOSUB 400 : GOTO 300
IF CMD$ = "" THEN GOTO 300
CALL IBWRT (SCOPE%,CMD$)
IF IBSTA% < O THEN GOTO 840
GOSUB 500

WEND

GOSUB 400

END

I

il
f

“SUBROUTINE LOCAL_MODE
CALL IBLOC (SCOPE%)
PRINT ""

RETURN

“SUBROUTINE GET_DATA
“If there are no data to read, simply wait until timeout occurs
CALL IBRD(SCOPE%,RD$)
I = IBCNT% “IBCNT% is the number of characters read
FOR J =1 TO I
PRINT MIDS$ (RD$,J,1);
NEXT J
PRINT ""
RETURN

181

Appendix A

605 “SUBROUTINE STORE_DATA

610 ‘

615 RD1$=SPACE$ (3)

620 LINE INPUT "Specify trace (EA,EB,MC,MD,FE,FF,C1,C2): ",TRACES$
625 LINE INPUT "Enter filename : " ,FILE$)
630 CMD$="WFSU NP,0,SP,0,FP,0,SN,0; CHDR SHORT"

640 CALL IBWRT (SCOPE%,CMD$)

645 CMD$=TRACES$+":WF?"

650 CALL IBWRT(SCOPE%,CMD$)

660 CALL IBRD(SCOPE%,RD1%) ‘Discard first 3 chars of response
665 CALL IBRDF (SCOPE%,FILES$)

670 IF IBSTA% < O THEN GOTO 840

675 PRINT "V

680 RETURN

700 ‘

705 “ SUBROUTINE RECALL_DATA

710 ’

715 LINE INPUT "Specify target memory (MC,MD): " MEMS$

720 LINE INPUT "Enter filename : ",FILE$

730 CMD$=MEM$+" : TRACE ON"

735 CALL IBWRT(SCOPE%,CMD$)

740 CALL IBWRTF(SCOPE%,FILE$)

745 IF IBSTA% < O THEN GOTO 840

750 PRINT ""

755 RETURN

800 ‘

810 “ERROR HANDLER

820 ‘

830 PRINT "IBFIND ERROR"

835 END

840 PRINT "GPIB ERROR -- IBERR: ";IBERR%;"IBSTA: ";HEX$(IBSTA%)
845 END

EXAMPLE 3:

GPIB PROGRAM FOR
IBM PC (LOW-LEVEL
FUNCTION CALLS) The following example has the same function as example 2, but it is

182

written with low level function calls.

The program assumes that the controller (board) and oscilloscope
(device) are at addresses 0 and 4 respectively. The decimal listen-
er and talker addresses of the controller and the device thus are:

Listener address Talker address
controller 32 (ASCII <space>) 64 (ASCII @)
device 32+44=36 (ASCII $) 64+4=68 (ASCII D).

Appendix A

1-99
100
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
230
235
240
245
250
260
265
270
275
280
285
290
295
300
305
310
315
320
321
325
330

<DECL.
CLS
PRINT
PRINT
PRINT
LOOP=1
CMD1$
CMD2$
BDNAME

BAS>

"Control of the 9450 (address 4) via GPIB and IBM PC"
"n. PRINT "Options : EX to exit LC local mode"
" ST store data RC recall data": PRINT""

= "?_@$" “Unlisten, Untalk, Board talker, Device listener
= "?_ D" “Unlisten, Untalk, Board listener, Device talker
$= "GPIBO": CALL IBFIND(BDNAMES$,6BRDO%)

IF BRDO% < O THEN GOTO 420

CALL IBSIC(BRDO%): IF IBSTA% < 0 THEN GOTO 425
WHILE LOOP
LINE INPUT "Enter command (EX --> Exit) : ",CMD$
V% = 1: CALL IBSRE (BRD0%,V%)
IF CMD$ = "ex" OR CMD$ = "EX" THEN LOOP = FALSE: GOTO 205
IF CMD$ = "st" OR CMD$ = "ST" THEN GOSUB 285: GOTO 200
IF CMD$ = "rc" OR CMD$ = "RC" THEN GOSUB 365: GOTO 200

IF
IF

CMD$ = "lc" OR CMD$ = "LC" THEN GOSUB 240: GOTO 200
CMD$ = "" THEN GOTO 200

CALL IBCMD(BRDO%,CMD1$): CALL IBWRT(BRD0%,CMD$): GOSUB 270

WEND
CALL I
CALL I
END

“LOCAL

,

V% = 0O

RETURN

BSIC(BRDO%): V%=0: CALL IBSRE (BRDO0%,V%)
BSIC(BRDO%)

MODE

: CALL IBSRE (BRD0%,V%): PRINT ""

“SUBROUTINE GET_DATA

-

CALL I
FOR J=
RETURN

BCMD (BRD0O%,CMD2$) : CALL IBRD(BRDO%,RD$): I=IBCNT%
1 TO I: PRINT MID$(RD$,J,1l);: NEXT J: PRINT ""

“SUBROUTINE STORE_DATA

’

RD1$=S
LINE I
LINE I
CALL I

PACES$ (3)

NPUT "Specify trace (EA,EB,MC,MD,FE,FF,C1,C2): ", TRACES$
NPUT "Enter filename : " ,FILE$

BCMD (BRD0O%,CMD1$)

CMD$="WFSU NP,0,SP,0,FP,0,SN,0;CHDR SHORT"

CALL I

BWRT (BRDO%, CMD$)

CMD$=TRACES$+":WF?": CALL IBWRT (BRD0%,CMD$)

CALL I

BCMD (BRD0%,CMD2%) : CALL IBRD(BRDO%,RD1$)

183

Appendix A

335
340
345
350
3585
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440

184

CALL IBRDF (BRDO%,FILES$)

IF IBSTA% < O THEN GOTO 430
PRINT ""

RETURN

“SUBROUTINE RECALL_DATA

LINE INPUT "Specify target memory (MC,MD): ", 6 MEM$
LINE INPUT "Enter filename : ",FILE$

CALL IBCMD (BRD0%,CMD1$)

CMD$=MEM$+" : TRACE ON": CALL IBWRT (BRD0%,CMD$)
CALL IBWRTF(BRDO%,FILE$)

IF IBSTA% < 0 THEN GOTO 430

PRINT #*

RETURN

“ERROR HANDLER

.

PRINT "IBFIND ERROR": STOP

PRINT "GPIB ERROR -- IBERR : ";IBERR%;"IBSTA : ";HEX$(IBSTA%)

STOP
END

APPENDIX B

THE WAVEFORM

TEMPLATE This is the response of the instrument to a command of the form
TMPL?
TMPL "
/00
000000 LECROY_1_1: TEMPLATE
8 66 109

; Explanation of the formats of waveforms and their descriptors on the
; LeCroy Digital Oscilloscopes,
H Software Release 33.1.1.2, 89/08/24.

; A descriptor and/or a waveform consists of one or several logical data blocks
; whose formats are explained below.

; Usually, complete waveforms are read: at the minimum they consist of

H the basic descriptor block WAVEDESC

; a data array block.

; Some more complex waveforms, e.g. envelope data or the results of a Fourier
; transform, may contain several data array blocks.

; When there are more blocks, they are in the following sequence:

; the basic descriptor block WAVEDESC

H the history text descriptor block USERTEXT (may or may not be present)
; the time array block (for RIS and sequence acquisitions only)

; data array block

; auxiliary or second data array block

; With the exception of the data and time arrays, every block starts with

; an 8-character name which identifies which kind of block it is.

; In the following explanation, every element of a block is described by a
; single line in the form

; <byte position> <variable name>: <variable type> ; <comment>
; where

; <byte position> = position in bytes (decimal offset) of the variable,
; relative to the beginning of the block.

; <variable name> = name of the variable.

; <variable type> = string up to 168-character name

; terminated with a null byte

; byte 8-bit signed data value

; word 16-bit signed data value

; long 32-bit signed data value

; float 32-bit IEEE floating point value

185

Appendix B

; with the format shown below

; ' 3 3 ... 2 2 ... bit

; 1 0 3 2 0 position
; s exponent fraction

; where

; s = sign of the fraction

; exponent = 8 bit exponent e
H fraction = 23 bit fraction f
; and the final value is

; (~1)*%*s % 2%%(e-127) * 1.f

|

; double 64-bit IEEE floating point value
H with the format shown below

5 8 6 ... & 5 ... bit

; 3 2 2 1 0 positon
; s exponent fraction

; where

; s = sign of the fraction

H exponent = 11 bit exponent e

H fraction = 52 bit fraction f

; and the final value is

; (-1)*%s * 2%%(e-~1023) * 1.f

; enum enumerated value in the range 0 to N

: represented as a 16-bit data value.

; The list of values follows immediately.
; The integer is preceded by an

; time_stamp double precision floating point number,
; for the number of seconds and some bytes
; for minutes, hours, days, months and year.

H double seconds (0.00 to 59.999999)
; byte minutes (0 to 59)

; byte hours (0 to 23)

; byte days (1 to 31)

; byte months (1 to 12)

; word year (0 to 16000)

H word uniused

; There are 16 bytes in a time field.

; data byte, word or float, depending on the

; read-out mode reflected by the WAVEDESC
; variable COMM_TYPE, modifiable via the
; remote command COMM_FORMAT.

; text arbitrary length text string
H (maximum 400)
H unit_definition a unit definition consists of a 48 character

H ASCII string terminated with a null byte
; for the unit name.

186

Appendix B

WAVEDESC: BLOCK

; Explanation of the wave descriptor block WAVEDESC ;

A ve A e

A

’

3

; BLOCKS

A AN A -

; ARRAYS

)
<

A v A e

A

0>

16>

32>

34>

The following variables of this basic wave descriptor block specify
the block lengths of all blocks of which the entire waveform (as it is
currently being read) is composed. If a block length is zero, this

DESCRIPTOR_NAME: string

TEMPLATE_NAME: string

COMM_TYPE: enum

_0 byte
1 word
endenum

COMM_ORDER: enum

_0 HIFIRST
_1 LOFIRST
endenum

block is (currently) not present.

36>
40>
44>

48>

52>

56>

60>

WAVE_DESCRIPTOR: long

USER_TEXT: long
RES_DESC1: long

TRIGTIME_ARRAY: long
RIS_TIME_ARRAY: long
RES_ARRAY1: long

WAVE_ARRAY_1: long

; the first 8 chars are always WAVEDESC

; chosen by remote command COMM_FORMAT

of block WAVEDESC
of block USERTEXT

of TRIGTIME array
of RIS_TIME array
an expansion entry is reserved
length in bytes of 1st simple

In transmitted wavefornm,

represent the number of transmitted
bytes in accordance with the NP

data. array.

187

Appendix B

; parameter of the WFSU remote command
; and the used format (see COMM_TYPE).

< 64> WAVE_ARRAY_2: long ; length in bytes of 2nd simple
; data array

< 68> RES_ARRAY2: long

< 72> RES_ARRAY3: long ; 2 expansion entries are reserved

; The following variables identify the instrument

< 76> INSTRUMENT_NAME: string

< 92> INSTRUMENT NUMBER: long

< 96> TRACE_LABEL: string ; identifies the waveform.

<112> RESERVED1: word

<114> RESERVED2: word ; 2 expansion entries

; The following variables describe the waveform and the time at

; which the waveform was generated.

<116> WAVE_ARRAY_COUNT: long ; number of data points in the data
; array. If there are two data
; arrays (FFT or Envelope), this number
; applies to each array separately.

<120> PNTS_PER_SCREEN: long ; nominal number of data points
; on the screen

<124> FIRST_VALID_PNT: long ; count of number of points to skip
; before first good point
; FIRST_VALID_POINT = O
; for normal waveforms.

<128> LAST_VALID_PNT: long ; index of last good data point
; in record before padding(blanking)
; was started.
; LAST_VALID_POINT = WAVE_ARRAY_COUNT-1
; except for aborted sequence
; and rollmode acquisitions

<132> FIRST_FOINT: long ; for input and output, indicates

; the offset relative to the
; beginning of the trace buffer.

188

Appendix B

<136>

<140>

<144>
<148>
<152>

<156>

<160>
<164>
<168>
<172>
f174>
<176>

<180>

SPARSING_FACTOR: long

SEGMENT_INDEX: long

SUBARRAY_COUNT: long

SWEEPS_PER_ACQ: long

NUMBER_REJECTED: long

VERTICAL_GAIN: float

VERTICAL_OFFSET: float

MAX_VALUE: float

MIN_VALUE: float

NOMINAL_BITS: word

RESERVED7: word

HORIZ_INTERVAL: float

HORIZ_OFFSET: double

Value is the same as the FP parameter
of the WFSU remote command.

for input and output, indicates

the sparsing into the transmitted
data block.

Value is the same as the SP parameter
of the WFSU remote command.

for input and output, indicates the
index of the transmitted segment.
Value is the same as the SN parameter
of the WFSU remote command.

actual number of subblocks within the
data array. (to be used in sequences)

for RIS or Sequence, Averages,...
it is the nominal number

number of sweeps rejected
while doing averaging

to get floating values from raw data :
VERTICAL_GAIN * data - VERTICAL_OFFSET

maximum allowed value. It corresponds
to the upper edge of the grid.

minimum allowed value. It corresponds
to the lower edge of the grid.

a measure of the intrinsic precision
of the observation: ADC data is 8 bit
averaged data is 10-12 bit, etc.

expansion entry

sampling interval for time domain
waveforms

trigger offset for the first sweep of

the trigger, seconds between the
trigger and the first data point

189

Appendix B

<188>

<198>
<244>
<292>
<2984>
<296>

<312>

<316>

<318>

<320>
<322>

PIXEL_OFFSET: double ;

VERTUNIT: unit_definition
HORUNIT: unit_definition
RESERVED3: word

RESERVED4: word i
TRIGGER_TIME: time_stamp ;

ACQ_DURATION: float H

RECORD_TYPE: enum

needed to know how to display the
waveform

; units of the vertical axis

; units of the horizontal axis

2 expansion entries

time of the trigger

duration of the acquisition (in sec)
in multi-trigger waveforms.
(e.g. sequence, RIS, or averaging)

0 single_sweep

1 interleaved

_2 histogram

_3 trend

_4 filter_coefficient

5 complex_frequency_domain
8 extrema-_envelope_display
_1 sequence

endenum

PROCESSING_DONE: enum

_0 no_processing

_1 fir_filter

_2 interpolated_waveform
_3 sparsed_waveform

_4 autoscaled_wavefornm
5 no_result_waveform

_8 rolling_waveform

1 cumulative_waveform
endenum

RESERVEDS: word
RESERVEDS: word ;

2 expansion entries

; The following variables describe the basic acquisition
; conditions used when the waveform was acquired

190

Appendix B

<324> TIMEBASE: enum
o 1_ps/div
1 2_ps/div
_2 5_ps/div
3 10_ps/div
_4 20_ps/div
_5 50_ps/div
_8 100_ps/div
7 200_ps/div
8 500_ps/div
9 1_ns/div
_10 2_ns/div
11 5_ns/div
_12 10_ns/div
_13 20_ns/div
14 50_ns/div
_15 100_ns/div
_18 200 _ns/div
_17 500_ns/div
_18 1_us/div
18 2_us/div
20 5_us/div
_21 10_us/div
_22 20_us/div
_23 50_us/div
24 100_us/div
_25 200_us/div
_26 500_us/div
_27 1_ms/div
_28 2_ms/div
29 5_ms/div
30 10_ms/div
31 20_ms/div
32 50_ms/div
_33 100_ms/div
34 200_ms/div
35 500_ms/div
36 1_s/div
37 2_s/div
38 5_s/div
39 10_s/div
40 20_s/div
41 50_s/div
_42 100_s/div
43 200_s/div
44 500_s/div

191

Appendix B

45 1_ks/div
46 2_ks/div
47 5_ks/div
100 EXTERNAL

enderium
<3286> VERT_COUPLING: enum
e DC_50_Ohms
1 ground
2 DC_1MOhm
3 ground
4 AC,_1MOhm
endenum
<328> PROBE_ATT: float
<332> FIXED_VERT GAIN: enum
_0 1_uv/div
_1 2_uv/div
_2 5_uv/div
_3 10_uv/div
4 20_uV/div
_5 50_uv/div
_6 100_uV/div
7 200_uV/div
_8 500_uV/div
_9 1_mv/div
10 2_mv/div
_11 5_mV/div
12 10_mv/div
13 20_mv/div
14 50_mV/div
15 100_mV/div
_18 200_mV/div
17 500_mv/div
18 1_v/div
_19 2 v/div
20 5_V/div
_21 10_V/div
22 20_v/div
_23 50_V/div
24 100 _V/div
25 200_V/div
_26 500_V/div
_27 1_kv/div
endenum

192

Appendix B

<334> BANDWIDTH_LIMIT: enum
_0 off
1 on,_80_MHz
endenum
<336> VERTICAL_VERNIER: float
<340> ACQ_VERT_OFFSET: float
<344> WAVE_SOURCE: enum
_0 CHANNEL _1
1 CHANNEL_2
_2 CHANNEL_3
_3 CHANNEL_4
_9 UNKNOWN
endenum
/00 ENDBLOCK

USERTEXT: BLOCK

’

; Explanation of the descriptor block USERTEXT at most 400 bytes long.

’
<

0> DESCRIPTOR_NAME: string
< 16> TEXT: text
/00 ENDBLOCK

SIMPLE: ARRAY

’
s
»

»

Explanation of the simple data array

; the first 8 chars are always USERTEXT

; this is simply a list of ASCII
; characters

The data item is repeated for each acquired or computed data point
of the first data array of any waveform.

0> MEASUREMENT: data

: the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM_TYPE variable.

193

Appendix B

/00 ENDARRAY

DATA_ARRAY_1: ARRAY

’

; Explanation of the data_array_1 array.
; The data item is repeated for each acquired or computed data point
; of the first data array of any waveforn.

; It is identical to SIMPLE above.

< 0> MEASUREMENT: data

/00 ENDARRAY

; the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM_TYPE variable.

DATA_ARRAY_2: ARRAY

’

; Explanation of the data_array_2 array.
; The data item is repeated for each acquired or computed data point
; of the second data array of any dual waveform

; e.g. the imaginary part of a FFT.

< 0> MEASUREMENT: data
/00 ENDARRAY
DUAL: ARRAY

; Explanation of the dual array.

; the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM_TYPE variable.

; This data block is repeated for each pair of computed data points
; composing respectively the first and second data array of a wavefornm,
; e.g the real and imaginary parts of an FFT.

< 0> MEASUREMENT_1: data

194

; data in the first data array.

Appendix B

; the actual format of a data is
; given in the WAVEDESC descriptor
; by the COMM_TYPE variable.

< 0> MEASUREMENT_2: data ; data in the second data array
; the byte offset depends on
; the actual format of the data which
; is given in the WAVEDESC descriptor
; by the COMM_TYPE variable.

/00 ENDARRAY

TRIGTIME: ARRAY
; Explanation of the trigger time array
; This data block is repeated for each segment which makes up the acquired
; sequence record.
< 0> TRIGGER_TIME: double ; for sequence acquisitions,
; time in seconds from first
; trigger to this one

< 8> TRIGGER_OFFSET: double ; the trigger offset is in seconds
; from trigger to zero’th data point

/00 ENDARRAY

RISTIME: ARRAY

; Explanation of the random-interleaved-sampling (RIS) time array

; This data block is repeated for each sweep which makes up the RIS record

< 0> RIS_OFFSET: double ; seconds from trigger to zero’th
; point of segment

/00 ENDARRAY
000000 ENDTEMPLATE

»

195

INDEX

This index does not contain entries for each of the remote commands. They can be found in
alphabetical order in section 5. Furthermore, the index does not contain references to the com-

mand descriptions in section S.

A

Assistance, 1

B
BASIC(A), 15-22, 161, 180
1 Binary Blocks, 163

C
CMR - CoMmand error Register, 171, 173,
174, 176
Command Execution, 37
Command Notation, 37—38
Command Summary, 35—36
Commands and Queries, 4, 6—9
Continuous Polling, 21
Controller Timeout, 4, 13, 19, 22, 180
Customer Service, 1—2

D

Data
Arrays, 159, 160
ASCII forms, 7—9
Blocks, 159
Formatting, 161, 163, 168
HEX mode, 29, 33, 162, 168
Horizontal position, 165—167
Interpretation, 162—165
Sparsing, 168
Time of, 165—167
Values, 161, 163—166

DDR - Device Dependent error status Regis-
ter, 176
Descriptor
Block, 159, 163
Values, 161, 163
Diagnostics Help Messages, 4

DUAL, 160, 161

E

Error Messages, 4

ESE - Standard Event Status Enable regis-
ter, 20, 171, 173, 175

ESR - Standard Event Status Register, 20,
171—174

EXR - EXecution error Register, 171, 176

G

GPIB, 11
Address switches, 3, 12, 25
ATN -~ ATteNtion, 12
Data lines, 12
DCL - Device CLear, 14
EOI - End Or Identify, §, 13
GET - Group Execute Trigger, 14, 19
GTL - Go To Local, 14, 18
Handshake lines, 12
Hard copies, 25—27
Hardware Configuration, 15
IEEE 488.1, 3, 13—15, 24
IEEE 488.2, 3, 13, 171, 174
IFC - InterFace Clear, 12, 15
Interface capabilities, 11

Index

Interface management lines, 12—13

Listener address, 24

LLO - Local LOckout, 14

MLA - Listen address, 12, 24, 27

MTA - Talker address, 12, 24, 27

Polling, 21—25

Programs for GPIB, 15—18, 2126,
179—182

REN - Remote ENable, 13, 14

RQS - ReQuest for Service, 22

SDC - Selected Device Clear, 14, 18

Signals, 12—13

Software Configuration, 15

SRE - Service Request Enable register,
19, 22

SRQ - Service ReQuest, 13, 19—20
Talker address, 24

Transfers, 15

UNL - Universal unlisten, 12, 24—25, 27
UNT - Universal untalk, 12, 24—-25, 27

H

Hard Copies. See GPIB
Header, 6—7

Header Path, 7

Help Messages, 4

I

IBCLR, 18
IBCMD, 23
IBFIND, 16
IBLOC, 18
IBRD, 16
IBRDF, 18
IBRDI, 18-—19
IBRPP, 24

IBRSP, 22

IBTMO, 19

IBTRG, 19

IBWAIT, 19, 22

IBWRT, 16

IBWRTF, 18

IBWRTI, 18-—19

IEEE Standards. See GPIB

INE - INternal state change Enable register,
20, 22, 23, 25, 171, 173, 176

INR - INternal state change Register, 20,
21, 22, 23, 25, 171, 173, 175

INSPECT? Queries, 160—162
Interface Messages, 11
IST Polling, 24—25, 173, 175

L
Line Splitting. See RS-232-C
Local State, §
Logical Data Blocks, 159

M

Maintenance, 1

P

PaRallel poll Enable register. See PRE
Parallel Polling, 23—24

Pin Assignments. See RS-232-C
Polling, 21-25

PRE - PaRallel poll Enable register, 23, 24,
173, 175

Program Messages, 3—4, 5—6

Index

R

RAN - Return Authorization Number, 2
Remote State, §
Response Message Form, 9—10
Return Procedure, 2
RISTIME, 160, 167
RS-232-C, 29
Configuration, 30
Echoing, 30
Editing, 31
Handshake control, 30—31
Immediate commands, 30
Line splitting, 32—33
Message terminators, 31
Pin assignments, 29—30
Simulating GPIB commands, 33
SRQ - Service request, 32

S
Serial Polling, 22
Service Procedure, 2
Service Requests, 171—173
SIMPLE, 160

SRE - Service Request Enable register, 19,
171, 173, 175

SRQ - Service ReQuest, 19—21, 32,
173—174

Standard Event Status Enable Register. See
ESE

Standard Event Status Register. See ESR

Status Register Reporting, 171

STB - STatus Byte register, 20—25, 32,
171—174

Suffix Multipliers, 8—9

T

Template, 159, 160, 163, 164, 165,
185—195

Terminators, 5, 9, 31, 164

Thumbwheel Switch. See GPIB Address
Switches

Transfers. See GPIB
Trigger Time, 160
TRIGTIME, 159, 166

U

URR -~ User Request status Register, 20,
176

USERTEXT, 159

w

Warning Messages, 4
Warranty, 1
WAVEDESC. See Descriptor
WAVEFORM

Command, 167

Query, 162—167, 168

Transfer Optimization, 168—169
Waveform Template, 185—195

ADDRESSES

US SALES OFFICES

800-5-LeCroy (automatically connects you
to your local sales office)

WORLDWIDE

Argentina: Search SA, (01) 394-5882

Australia: Scientific Devices Pty.Ltd,
(03) 579-3622

Austria: Dewetron Elek. Messgerate GmbH,
(0316) 391804

Benelux: LeCroy B.V., 31-4902-89285
Brazil: A. Santos, (021) 233 5590

Canada: Rayonics, W. Ontario:
(416) 736-1600
Rayonics, E. Ontario/Manitoba:
(613) 521-8251
Rayonics, Quebec:
(514) 335-0105
Rayonics, W. Canada:
(604) 293-1854

Denmark: Lutronic, (42) 459764
Finland: Labtronic OY, (90) 847144
France: LeCroy Sarl (1) 69073897

Germany: LeCroy GmbH, (06221) 49162
{(North) (0405) 42713

Greece: Hellenic S/R Ltd., (01) 721 1140
India: Electronic Ent., (022) 4137096
Israel: Ammo, (03) 453157

Italy: LeCroy S.r.l.,Roma (06) 302-9646
Milano (02) 2940-5634
(02) 204 7082
Japan: Toyo Corp., (03) 279 0771
Korea: Samduk Science & Ind., Ltd.:
(02) 468 04914

Mexico: Nucleoelectronica SA:
(905) 593 6043

New Zealand: E.C. Gough Ltd.,
(03) 798-740

Norway: Avantec A/S, (02) 630520

Pakistan: Electronuclear Corp.,
(021) 418087

Portugal: M.T. Brandao, Lta,,
{02) 691116

Singapore: Singapore Electronics and
Eng. Ltd., (065) 481 8888

Spain: Anadig Ingenieros SA,
(01) 433 2412

Sweden: MSS AB, (0764) 68100

Switzerland: LeCroy S.A.
(022) 719 21 11

Taiwan: Topward El Inst., Ltd.,
(02) 601 8801

Thailand: Measuretronix Ltd.,
(02) 374 2516

United Kingdom: LeCroy Ltd.,
(0235) 33 114

LeCROY
CORPORATE HEADQUARTERS

700 Chestnut Ridge Road
Chestnut Ridge, NY 10977-6499
Telephone: (914) 578 6097
TWX:(710) 577-2832

Fax: (914) 425-8967

LeCROY
EUROPEAN HEADQUARTERS

2 chemin Pré-de-la-Fontaine

P.O. Box 341 :

1217 Meyrin 1/Geneva, Switzerland
Tel.: (022) 719 21 11 Telex: 419 058
Fax: (022) 782 39 15

